Volltext-Downloads (blau) und Frontdoor-Views (grau)
The search result changed since you submitted your search request. Documents might be displayed in a different sort order.
  • search hit 3 of 25
Back to Result List

Science-based analysis for climate action: how HSBC Bank uses the En-ROADS climate policy simulation

  • In 2018, the Intergovernmental Panel on Climate Change (IPCC, 2018) found that rapid decarbonization and net negative greenhouse gas (GHG) emissions by mid-century are required to "hold the increase in global average temperature to well below 2°C above pre-industrial levels and pursue efforts to limit the temperature increase to 1.5°C," as stipulated by the Paris Agreement (UNFCCC, 2015, p. 2). Meeting these goals reduces physical climate-related risks from, for example, sea-level rise, ocean acidification, extreme weather, water shortages, declining crop yields, and other impacts. These impacts threaten our economy, security, health, and lives. At the same time, policies to mitigate these harms by rapidly reducing GHG emissions can create transition risks for businesses - for example, stranded assets and loss of market value for fossil fuel producers and firms dependent on fossil energy (Carney, 2019). Rapid decarbonization requires an unprecedented energy transition (IEA, 2021a) driven by and affecting economic players including businesses, asset managers, and investors in all sectors and all countries (Kriegler et al., 2014). However, GHG emissions are not falling rapidly enough to meet the goals of the Paris Agreement (Holz et al., 2018). The UNFCCC, 2021 found that the emissions reductions pledged by all nations as of early 2021 "fall far short of what is required, demonstrating the need for Parties to further strengthen their mitigation commitments under the Paris Agreement" (2021, p. 5). Businesses are faring no better. Despite high-profile calls to action from influential firms such as BlackRock (Fink, 2018, 2021), corporate action to meet climate goals has thus far fallen short (e.g. the Right, 2019 analysis of the German DAX 30 companies' emissions targets by NGO "right."). Instead of implementing climate strategies that might mitigate the risks, managers are often caught up in "firefighting" and capability traps that erode the resources needed for ambitious climate action (Sterman, 2015). Firms may also exaggerate environmental accomplishments, leading to greenwashing (Lyon and Maxwell, 2011); implement policies that are vague, rely on unproven offsets, or are not climate neutral (e.g. Sterman et al., 2018); or simply take no action at all (Delmas and Burbano, 2011; Sterman, 2015). Adding to the confusion are difficulties evaluating the effectiveness of different climate policies. Misperceptions include wait-and-see approaches (Dutt and Gonzalez, 2012; Sterman, 2008), underestimating time delays and ignoring the unintended consequences of policies (Sterman, 2008), and beliefs in "silver bullet" solutions (Gilbert, 2009; Kriegler et al., 2013; Shackley and Dütschke, 2012). These beliefs arise in part because the climate–energy system is a high-dimensional dynamic system characterized by long time delays, multiple feedback loops, and nonlinearities (Sterman, 2011), while even simple systems are difficult for people to understand (Booth Sweeney and Sterman, 2000; Cronin et al., 2009; Kapmeier et al., 2017). Although senior executives might receive briefings on climate change, simply providing more information does not necessarily lead to more effective action (Pearce et al., 2015; Sterman, 2011). Alternatively, interactive approaches to learning about climate change and policies to mitigate it can trigger climate action (Creutzig and Kapmeier, 2020). Decision-makers require tools and methods grounded in science that enable them to learn for themselves how a low-carbon economy can be achieved and how climate policies condition physical and transition risks. The system dynamics climate–energy simulation En-ROADS (Energy-Rapid Overview and Decision Support; Jones et al., 2019b), codeveloped by the climate think-tank Climate Interactive and the MIT Sloan Sustainability Initiative, provides such a tool. Here we show how En-ROADS helps HSBC Bank U.S.A., the American subsidiary of U.K.-based multinational financial services company HSBC Holdings plc, focus its global sustainability strategy on activities with higher impact and relevance, communicate and implement the strategy, understand transition risks, and better align the strategy with global climate goals. We show how the versatility and interactivity of En-ROADS increases its reach throughout the organization. Finally, we discuss challenges and lessons learned that may be helpful to other organizations.

Download full text files

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenKapmeier, Florian
URN:urn:nbn:de:bsz:rt2-opus4-34116
DOI:https://doi.org/10.1002/sdr.1697
ISSN:0883-7066
eISSN:1099-1727
Erschienen in:System dynamics review : the journal of the System Dynamics Society
Publisher:Wiley
Place of publication:New York
Document Type:Journal article
Language:English
Publication year:2021
Volume:37
Issue:4
Page Number:20
First Page:333
Last Page:352
DDC classes:004 Informatik
Open access?:Ja
Licence (German):License Logo  Creative Commons - CC BY - Namensnennung 4.0 International