Volltext-Downloads (blau) und Frontdoor-Views (grau)
  • search hit 11 of 116
Back to Result List

Analyse von Atmungs- und Körperbewegungssignalen zur Identifikation von Schlafstadien

  • Fragestellung: Das klinische Standardverfahren und Referenz der Schlafmessung und der Klassifizierung der einzelnen Schlafstadien ist die Polysomnographie (PSG). Alternative Ansätze zu diesem aufwändigen Verfahren könnten einige Vorteile bieten, wenn die Messungen auf eine komfortablere Weise durchgeführt werden. Das Hauptziel dieser Forschung Studie ist es, einen Algorithmus für die automatische Klassifizierung von Schlafstadien zu entwickeln, der ausschließlich Bewegungs- und Atmungssignale verwendet [1]. Patienten und Methoden: Nach der Analyse der aktuellen Forschungsarbeiten haben wir multinomiale logistische Regression als Grundlage für den Ansatz gewählt [2]. Um die Genauigkeit der Auswertung zu erhöhen, wurden vier Features entwickelt, die aus Bewegungs- und Atemsignalen abgeleitet wurden. Für die Auswertung wurden die nächtlichen Aufzeichnungen von 35 Personen verwendet, die von der Charité-Universitätsmedizin Berlin zur Verfügung gestellt wurden. Das Durchschnittsalter der Teilnehmer betrug 38,6 +/– 14,5 Jahre und der BMI lag bei durchschnittlich 24,4 +/– 4,9 kg/m2. Da der Algorithmus mit drei Stadien arbeitet, wurden die Stadien N1, N2 und N3 zum NREM-Stadium zusammengeführt. Der verfügbare Datensatz wurde strikt aufgeteilt: in einen Trainingsdatensatz von etwa 100 h und in einen Testdatensatz mit etwa 160 h nächtlicher Aufzeichnungen. Beide Datensätze wiesen ein ähnliches Verhältnis zwischen Männern und Frauen auf, und der durchschnittliche BMI wies keine signifikante Abweichung auf. Ergebnisse: Der Algorithmus wurde implementiert und lieferte erfolgreiche Ergebnisse: die Genauigkeit der Erkennung von Wach-/NREM-/REM-Phasen liegt bei 73 %, mit einem Cohen’s Kappa von 0,44 für die analysierten 19.324 Schlafepochen von jeweils 30 s. Die beobachtete gewisse Überschätzung der NREM-Phase lässt sich teilweise durch ihre Prävalenz in einem typischen Schlafmuster erklären. Selbst die Verwendung eines ausbalancierten Trainingsdatensatzes konnte dieses Problem nicht vollständig lösen. Schlussfolgerungen: Die erreichten Ergebnisse haben die Tauglichkeit des Ansatzes prinzipiell bestätigt. Dieser hat den Vorteil, dass nur Bewegungs- und Atemsignale verwendet werden, die mit weniger Aufwand und komfortabler für Benutzer aufgezeichnet werden können als z. B. Herz- oder EEG-Signale. Daher stellt das neue System eine deutliche Verbesserung im Vergleich zu bestehenden Ansätzen dar. Die Zusammenführung der beschriebenen algorithmischen Software mit dem in [1] beschriebenen Hardwaresystem zur Messung von Atem- und Körperbewegungssignalen zu einem autonomen, berührungslosen System zur kontinuierlichen Schlafüberwachung ist eine mögliche Richtung zukünftiger Arbeiten.

Download full text files

  • 4770.pdf
    deu

Export metadata

Additional Services

Search Google Scholar

Statistics

frontdoor_oas
Metadaten
Author of HS ReutlingenMartínez Madrid, Natividad
DOI:https://doi.org/10.1007/s11818-023-00424-5
ISSN:1432-9123
eISSN:1439-054X
Erschienen in:Somnologie
Publisher:Springer
Place of publication:Heidelberg
Document Type:Journal article
Language:German
Publication year:2023
Tag:Atemsignalanalyse; Körperbewegungssignal; Logistische Regression; Regressionsanalyse; Schlafstadien
Volume:27
Issue:1
Page Number:1
First Page:S3
Article Number:Abstracts der 31. Jahrestagung der Deutschen Gesellschaft für Schlafforschung und Schlafmedizin e. V.
PPN:Im Katalog der Hochschule Reutlingen ansehen
DDC classes:610 Medizin, Gesundheit
Open access?:Nein
Licence (German):License Logo  In Copyright - Urheberrechtlich geschützt