Volltext-Downloads (blau) und Frontdoor-Views (grau)

A simple and accurate method for computer-aided transapical aortic valve replacement

  • Background and purpose: Transapical aortic valve replacement (TAVR) is a recent minimally invasive surgical treatment technique for elderly and high-risk patients with severe aortic stenosis. In this paper,a simple and accurate image-based method is introduced to aid the intra-operative guidance of TAVR procedure under 2-D X-ray fluoroscopy. Methods: The proposed method fuses a 3-D aortic mesh model and anatomical valve landmarks with live 2-D fluoroscopic images. The 3-D aortic mesh model and landmarks are reconstructed from interventional X-ray C-arm CT system, and a target area for valve implantation is automatically estimated using these aortic mesh models.Based on template-based tracking approach, the overlay of visualized 3-D aortic mesh model, land-marks and target area of implantation is updated onto fluoroscopic images by approximating the aortic root motion from a pigtail catheter motion without contrast agent. Also, a rigid intensity-based registration algorithm is used to track continuously the aortic root motion in the presence of contrast agent.Furthermore, a sensorless tracking of the aortic valve prosthesis is provided to guide the physician to perform the appropriate placement of prosthesis into the estimated target area of implantation. Results: Retrospective experiments were carried out on fifteen patient datasets from the clinical routine of the TAVR. The maximum displacement errors were less than 2.0 mm for both the dynamic overlay of aortic mesh models and image-based tracking of the prosthesis, and within the clinically accepted ranges. Moreover, high success rates of the proposed method were obtained above 91.0% for all tested patient datasets. Conclusion: The results showed that the proposed method for computer-aided TAVR is potentially a helpful tool for physicians by automatically defining the accurate placement position of the prosthesis during the surgical procedure.

Download full text files

  • 716.pdf

Export metadata

Additional Services

Search Google Scholar


Author of HS ReutlingenBurgert, Oliver
Erschienen in:Computerized medical imaging and graphics
Place of publication:Amsterdam
Document Type:Journal article
Publication year:2016
Tag:X-ray fluoroscopy; aortic valve; biomedical image processing; computer-aided surgery; image-guided intervention; minimally invasive cardiac surgery
Issue:Special Issue on Computer Assisted Stenting
Page Number:11
First Page:31
Last Page:41
DDC classes:610 Medizin, Gesundheit
Open access?:Nein
Licence (German):License Logo  In Copyright - Urheberrechtlich geschützt