Binary endoscope localization from laparoscopic video as virtual sensor for automatic workflow detection
- This paper contributes to the automatic detection of perioperative workflow by developing a binary endoscope localization. Automated situation recognition in the context of an intelligent operating room requires the automatic conversion of low level cues into more abstract high level information. Imagery from a laparoscope delivers rich content that is easy to obtain but hard to process. We introduce a system which detects if the endoscope's distal tip is inside or outsiede the patient based on the endoscope video. This information can be used as one parameter in a situation recognition pipeline. Our localization performs in real-time at a video resolution of 1280x720 and 5-fold cross validation yields mean F1-scores of up to 0,94 on videos of 7 laparoscopies.
Author of HS Reutlingen | Scheytt, Josia; Wiemuth, Markus; Burgert, Oliver |
---|---|
URL: | https://www.curac.org/images/advportfoliopro/images/CURAC2017/2017_CURAC_Tagungsband_Compiled_V1.7_final.pdf |
ISBN: | 978-3-95900-158-8 |
Erschienen in: | CURAC 2017 - Tagungsband : 16. Jahrestagung der Deutschen Gesellschaft für Computer- und Roboterassistierte Chirurgie (CURAC) : 5.-7. Oktober 2017, Hannover |
Publisher: | Deutsche Gesellschaft für Computer- und Roboterassistierte Chirurgie e. V. |
Place of publication: | Stuttgart |
Editor: | Jessica Burgner-Kahrs |
Document Type: | Conference proceeding |
Language: | English |
Publication year: | 2017 |
Tag: | endoscope localization; laparoscopic surgery; situation recognition |
Page Number: | 6 |
First Page: | 191 |
Last Page: | 196 |
PPN: | Im Katalog der Hochschule Reutlingen ansehen |
DDC classes: | 610 Medizin, Gesundheit |
Open access?: | Ja |
Licence (German): | ![]() |