Refine
Document Type
- Article (19)
- Part of a Book (10)
- Conference Proceeding (9)
- Book (2)
- Doctoral Thesis (1)
Is part of the Bibliography
- yes (41)
Institute
- ESB Business School (41) (remove)
Publisher
- Springer (41) (remove)
The Dow Jones Sustainability Indexes (DJSI) track the performance of companies that lead in corporate sustainability in their respective sectors or in the geographies they operate. The Sustainable Asset Management (SAM) Indexes GmbH publishes and markets the indexes, the so-called Dow Jones Sustainability Indexes in collaboration with SAM. All indexes of the DJSI family are assessed according to SAM’s Corporate Sustainability AssessmentTM methodology.
Am 1. November 2010 wurde der Leitfaden zur gesellschaftlichen Verantwortung von Organisationen – „Guidance on Social Responsibility“ (ISO 26000:2010) – veröffentlicht. Dieses Normendokument wurde innerhalb von sechs Jahren in einem auch für die ‚International Organization for Standardization’(ISO) einzigartigen, weltweiten Normierungsprozess mit mehr als 400 Experten aus 99 Ländern erarbeitet.
Prior to the introduction of AI-based forecast models in the procurement department of an industrial retail company, we assessed the digital skills of the procurement employees and surveyed their attitudes toward a new digital technology. The aim of the survey was to ascertain important contextual factors which are likely to influence the acceptance and the successful use of the new forecast tool. What we find is that the digital skills of the employees show an intermediate level and that their attitudes toward key aspects of new digital technologies are largely positive. Thus, the conditions for high acceptance and the successful use of the models are good, as evidenced by the high intention of the procurement staff to use the models. In line with previous research, we find that the perceived usefulness of a new technology and the perceived ease of use are significant drivers of the willingness to use the new forecast tool.
Forecasting demand is challenging. Various products exhibit different demand patterns. While demand may be constant and regular for one product, it may be sporadic for another, as well as when demand occurs, it may fluctuate significantly. Forecasting errors are costly and result in obsolete inventory or unsatisfied demand. Methods from statistics, machine learning, and deep learning have been used to predict such demand patterns. Nevertheless, it is not clear for what demand pattern, which algorithm would achieve the best forecast. Therefore, even today a large number of models are used to forecast on a test period. The model with the best result on the test period is used for the actual forecast. This approach is computationally and time intensive and, in most cases, uneconomical. In our paper we show the possibility to use a machine learning classification algorithm, which predicts the best possible model based on the characteristics of a time series. The approach was developed and evaluated on a dataset from a B2B-technical-retailer. The machine learning classification algorithm achieves a mean ROC-AUC of 89%, which emphasizes the skill of the model.
Forecasting demand is challenging. Various products exhibit different demand patterns. While demand may be constant and regular for one product, it may be sporadic for another, as well as when demand occurs, it may fluctuate significantly. Forecasting errors are costly and result in obsolete inventory or unsatisfied demand. Methods from statistics, machine learning, and deep learning have been used to predict such demand patterns. Nevertheless, it is not clear for what demand pattern, which algorithm would achieve the best forecast. Therefore, even today a large number of models are used to forecast on a test period. The model with the best result on the test period is used for the actual forecast. This approach is computationally and time intensive and, in most cases, uneconomical. In our paper we show the possibility to use a machine learning classification algorithm, which predicts the best possible model based on the characteristics of a time series. The approach was developed and evaluated on a dataset from a B2B-technical-retailer. The machine learning classification algorithm achieves a mean ROC-AUC of 89%, which emphasizes the skill of the model.
Intermittent time series forecasting is a challenging task which still needs particular attention of researchers. The more unregularly events occur, the more difficult is it to predict them. With Croston’s approach in 1972 (1.Nr. 3:289–303), intermittence and demand of a time series were investigated the first time separately. He proposes an exponential smoothing in his attempt to generate a forecast which corresponds to the demand per period in average. Although this algorithm produces good results in the field of stock control, it does not capture the typical characteristics of intermittent time series within the final prediction. In this paper, we investigate a time series’ intermittence and demand individually, forecast the upcoming demand value and inter-demand interval length using recent machine learning algorithms, such as long-short-term-memories and light-gradient-boosting machines, and reassemble both information to generate a prediction which preserves the characteristics of an intermittent time series. We compare the results against Croston’s approach, as well as recent forecast procedures where no split is performed.
Since the beginning of the energy sector liberalization, the design of energy markets has become a prominent field of research. Markets nowadays facilitate efficient resource allocation in many fields of energy system operation, such as plant dispatch, control reserve provisioning, delimitation of related carbon emissions, grid congestion management, and, more recently, smart grid concepts and local energy trading. Therefore, good market designs play an important role in enabling the energy transition toward a more sustainable energy supply for all. In this chapter, we retrace how market engineering shaped the development of energy markets and how the research focus shifted from national wholesale markets to more decentralized and location-sensitive concepts.
In a networked world, companies depend on fast and smart decisions, especially when it comes to reacting to external change. With the wealth of data available today, smart decisions can increasingly be based on data analysis and be supported by IT systems that leverage AI. A global pandemic brings external change to an unprecedented level of unpredictability and severity of impact. Resilience therefore becomes an essential factor in most decisions when aiming at making and keeping them smart. In this chapter, we study the characteristics of resilient systems and test them with four use cases in a wide-ranging set of application areas. In all use cases, we highlight how AI can be used for data analysis to make smart decisions and contribute to the resilience of systems.
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain manufacturing processes to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges when applying these token-based approaches to dynamic manufacturing processes. As a first step, this paper investigates existing mapping approaches and exemplifies weaknesses regarding their suitability for products with changeable configurations. Secondly, a concept is proposed to overcome these weaknesses by introducing logically coupled tokens embedded into a flexible smart contract structure. Finally, a concept for a token-based architecture is introduced to map manufacturing processes of products with changeable configurations.
Global, competitive markets which are characterised by mass customisation and rapidly changing customer requirements force major changes in production styles and the configuration of manufacturing systems. As a result, factories may need to be regularly adapted and optimised to meet short-term requirements. One way to optimise the production process is the adaptation of the plant layout to the current or expected order situation. To determine whether a layout change is reasonable, a model of the current layout is needed. It is used to perform simulations and in the case of a layout change it serves as a basis for the reconfiguration process. To aid the selection of possible measurement systems, a requirements analysis was done to identify the important parameters for the creation of a digital shadow of a plant layout. Based on these parameters, a method is proposed for defining limit values and specifying exclusion criteria. The paper thus contributes to the development and application of systems that enable an automatic synchronisation of the real layout with the digital layout.