Refine
Document Type
- Conference Proceeding (87)
- Part of a Book (74)
- Article (55)
Has Fulltext
- yes (216) (remove)
Is part of the Bibliography
- yes (216)
Institute
- Informatik (99)
- Textil und Design (43)
- ESB Business School (35)
- Angewandte Chemie (20)
- Technik (18)
- Zentrale Einrichtungen (1)
Publisher
- Springer (216) (remove)
One of the key challenges for automatic assistance is the support of actors in the operating room depending on the status of the procedure. Therefore, context information collected in the operating room is used to gain knowledge about the current situation. In literature, solutions already exist for specific use cases, but it is doubtful to what extent these approaches can be transferred to other conditions. We conducted a comprehensive literature research on existing situation recognition systems for the intraoperative area, covering 274 articles and 95 cross-references published between 2010 and 2019. We contrasted and compared 58 identified approaches based on defined aspects such as used sensor data or application area. In addition, we discussed applicability and transferability. Most of the papers focus on video data for recognizing situations within laparoscopic and cataract surgeries. Not all of the approaches can be used online for real-time recognition. Using different methods, good results with recognition accuracies above 90% could be achieved. Overall, transferability is less addressed. The applicability of approaches to other circumstances seems to be possible to a limited extent. Future research should place a stronger focus on adaptability. The literature review shows differences within existing approaches for situation recognition and outlines research trends. Applicability and transferability to other conditions are less addressed in current work.
The Dow Jones Sustainability Indexes (DJSI) track the performance of companies that lead in corporate sustainability in their respective sectors or in the geographies they operate. The Sustainable Asset Management (SAM) Indexes GmbH publishes and markets the indexes, the so-called Dow Jones Sustainability Indexes in collaboration with SAM. All indexes of the DJSI family are assessed according to SAM’s Corporate Sustainability AssessmentTM methodology.
Public transport maps are typically designed in a way to support route finding tasks for passengers, while they also provide an overview about stations, metro lines, and city-specific attractions. Most of those maps are designed as a static representation, maybe placed in a metro station or printed in a travel guide. In this paper, we describe a dynamic, interactive public transport map visualization enhanced by additional views for the dynamic passenger data on different levels of temporal granularity. Moreover, we also allow extra statistical information in form of density plots, calendar-based visualizations, and line graphs. All this information is linked to the contextual metro map to give a viewer insights into the relations between time points and typical routes taken by the passengers. We also integrated a graph-based view on user-selected routes, a way to interactively compare those routes, an attribute- and property-driven automatic computation of specific routes for one map as well as for all available maps in our repertoire, and finally, also the most important sights in each city are included as extra information to include in a user-selected route. We illustrate the usefulness of our interactive visualization and map navigation system by applying it to the railway system of Hamburg in Germany while also taking into account the extra passenger data. As another indication for the usefulness of the interactively enhanced metro maps we conducted a controlled user experiment with 20 participants.
Am 1. November 2010 wurde der Leitfaden zur gesellschaftlichen Verantwortung von Organisationen – „Guidance on Social Responsibility“ (ISO 26000:2010) – veröffentlicht. Dieses Normendokument wurde innerhalb von sechs Jahren in einem auch für die ‚International Organization for Standardization’(ISO) einzigartigen, weltweiten Normierungsprozess mit mehr als 400 Experten aus 99 Ländern erarbeitet.
Prior to the introduction of AI-based forecast models in the procurement department of an industrial retail company, we assessed the digital skills of the procurement employees and surveyed their attitudes toward a new digital technology. The aim of the survey was to ascertain important contextual factors which are likely to influence the acceptance and the successful use of the new forecast tool. What we find is that the digital skills of the employees show an intermediate level and that their attitudes toward key aspects of new digital technologies are largely positive. Thus, the conditions for high acceptance and the successful use of the models are good, as evidenced by the high intention of the procurement staff to use the models. In line with previous research, we find that the perceived usefulness of a new technology and the perceived ease of use are significant drivers of the willingness to use the new forecast tool.
Forecasting demand is challenging. Various products exhibit different demand patterns. While demand may be constant and regular for one product, it may be sporadic for another, as well as when demand occurs, it may fluctuate significantly. Forecasting errors are costly and result in obsolete inventory or unsatisfied demand. Methods from statistics, machine learning, and deep learning have been used to predict such demand patterns. Nevertheless, it is not clear for what demand pattern, which algorithm would achieve the best forecast. Therefore, even today a large number of models are used to forecast on a test period. The model with the best result on the test period is used for the actual forecast. This approach is computationally and time intensive and, in most cases, uneconomical. In our paper we show the possibility to use a machine learning classification algorithm, which predicts the best possible model based on the characteristics of a time series. The approach was developed and evaluated on a dataset from a B2B-technical-retailer. The machine learning classification algorithm achieves a mean ROC-AUC of 89%, which emphasizes the skill of the model.
Digitalisierung und Mediatisierung prägen die Gesellschaft und auch die Erwachsenenbildung/Weiterbildung. Der Beitrag geht der Frage nach, wie Digitalisierung in Angeboten der Erwachsenenbildung/Weiterbildung gelingt. Damit wird ein Fokus auf den Einsatz digitaler Medien gelegt. Dazu werden die Angebotsentwicklung für Adressatinnen und Adressaten sowie Teilnehmende, medienbezogene Inhalte, Lehr- und Lernarrangements mit digitalen Medien, der Einsatz digitaler Medien und die Zugänglichkeit von Lehr- und Lernmaterialien als relevante Merkmale identifiziert. Insgesamt zeigen die analysierten Interviewdaten, dass der Einsatz digitaler Medien in Angeboten eine Erweiterung der didaktischen Aufgaben darstellt, da Angebote mit digitalen Medien zielgenau auf die Bedarfe und Möglichkeiten von Adressatinnen und Adressaten sowie Teilnehmenden abgestimmt werden müssen.
Forecasting demand is challenging. Various products exhibit different demand patterns. While demand may be constant and regular for one product, it may be sporadic for another, as well as when demand occurs, it may fluctuate significantly. Forecasting errors are costly and result in obsolete inventory or unsatisfied demand. Methods from statistics, machine learning, and deep learning have been used to predict such demand patterns. Nevertheless, it is not clear for what demand pattern, which algorithm would achieve the best forecast. Therefore, even today a large number of models are used to forecast on a test period. The model with the best result on the test period is used for the actual forecast. This approach is computationally and time intensive and, in most cases, uneconomical. In our paper we show the possibility to use a machine learning classification algorithm, which predicts the best possible model based on the characteristics of a time series. The approach was developed and evaluated on a dataset from a B2B-technical-retailer. The machine learning classification algorithm achieves a mean ROC-AUC of 89%, which emphasizes the skill of the model.
The early detection of head and neck cancer is a prolonged challenging task. It requires a precise and accurate identification of tissue alterations as well as a distinct discrimination of cancerous from healthy tissue areas. A novel approach for this purpose uses microspectroscopic techniques with special focus on hyperspectral imaging (HSI) methods. Our proof-of-principle study presents the implementation and application of darkfield elastic light scattering spectroscopy (DF ELSS) as a non-destructive, high-resolution, and fast imaging modality to distinguish lingual healthy from altered tissue regions in a mouse model. The main aspect of our study deals with the comparison of two varying HSI detection principles, which are a point-by-point and line scanning imaging, and whether one might be more appropriate in differentiating several tissue types. Statistical models are formed by deploying a principal component analysis (PCA) with the Bayesian discriminant analysis (DA) on the elastic light scattering (ELS) spectra. Overall accuracy, sensitivity, and precision values of 98% are achieved for both models whereas the overall specificity results in 99%. An additional classification of model-unknown ELS spectra is performed. The predictions are verified with histopathological evaluations of identical HE-stained tissue areas to prove the model’s capability of tissue distinction. In the context of our proof-of-principle study, we assess the Pushbroom PCA-DA model to be more suitable for tissue type differentiations and thus tissue classification. In addition to the HE-examination in head and neck cancer diagnosis, the usage of HSI-based statistical models might be conceivable in a daily clinical routine.
Intermittent time series forecasting is a challenging task which still needs particular attention of researchers. The more unregularly events occur, the more difficult is it to predict them. With Croston’s approach in 1972 (1.Nr. 3:289–303), intermittence and demand of a time series were investigated the first time separately. He proposes an exponential smoothing in his attempt to generate a forecast which corresponds to the demand per period in average. Although this algorithm produces good results in the field of stock control, it does not capture the typical characteristics of intermittent time series within the final prediction. In this paper, we investigate a time series’ intermittence and demand individually, forecast the upcoming demand value and inter-demand interval length using recent machine learning algorithms, such as long-short-term-memories and light-gradient-boosting machines, and reassemble both information to generate a prediction which preserves the characteristics of an intermittent time series. We compare the results against Croston’s approach, as well as recent forecast procedures where no split is performed.
Context: Agile practices as well as UX methods are nowadays well-known and often adopted to develop complex software and products more efficiently and effectively. However, in the so called VUCA environment, which many companies are confronted with, the sole use of UX research is not sufficient to find the best solutions for customers. The implementation of Design Thinking can support this process. But many companies and their product owners don’t know how much resources they should spend for conducting Design Thinking.
Objective: This paper aims at suggesting a supportive tool, the “Discovery Effort Worthiness (DEW) Index”, for product owners and agile teams to determine a suitable amount of effort that should be spent for Design Thinking activities.
Method: A case study was conducted for the development of the DEW index. Design Thinking was introduced into the regular development cycle of an industry Scrum team. With the support of UX and Design Thinking experts, a formula was developed to determine the appropriate effort for Design Thinking.
Results: The developed “Discovery Effort Worthiness Index” provides an easy-to-use tool for companies and their product owners to determine how much effort they should spend on Design Thinking methods to discover and validate requirements. A company can map the corresponding Design Thinking methods to the results of the DEW Index calculation, and product owners can select the appropriate measures from this mapping. Therefore, they can optimize the effort spent for discovery and validation.
Context: Many companies are facing an increasingly dynamic and uncertain market environment, making traditional product roadmapping practices no longer sufficiently applicable. As a result, many companies need to adapt their product roadmapping practices for continuing to operate successfully in today’s dynamic market environment. However, transforming product roadmapping practices is a difficult process for organizations. Existing literature offers little help on how to accomplish such a process.
Objective: The objective of this paper is to present a product roadmap transformation approach for organizations to help them identify appropriate improvement actions for their roadmapping practices using an analysis of their current practices.
Method: Based on an existing assessment procedure for evaluating product roadmapping practices, the first version of a product roadmap transformation approach was developed in workshops with company experts. The approach was then given to eleven practitioners and their perceptions of the approach were gathered through interviews.
Results: The result of the study is a transformation approach consisting of a process describing what steps are necessary to adapt the currently applied product roadmapping practice to a dynamic and uncertain market environment. It also includes recommendations on how to select areas for improvement and two empirically based mapping tables. The interviews with the practitioners revealed that the product roadmap transformation approach was perceived as comprehensible, useful, and applicable. Nevertheless, we identified potential for improvements, such as a clearer presentation of some processes and the need for more improvement options in the mapping tables. In addition, minor usability issues were identified.
Since the beginning of the energy sector liberalization, the design of energy markets has become a prominent field of research. Markets nowadays facilitate efficient resource allocation in many fields of energy system operation, such as plant dispatch, control reserve provisioning, delimitation of related carbon emissions, grid congestion management, and, more recently, smart grid concepts and local energy trading. Therefore, good market designs play an important role in enabling the energy transition toward a more sustainable energy supply for all. In this chapter, we retrace how market engineering shaped the development of energy markets and how the research focus shifted from national wholesale markets to more decentralized and location-sensitive concepts.
In a networked world, companies depend on fast and smart decisions, especially when it comes to reacting to external change. With the wealth of data available today, smart decisions can increasingly be based on data analysis and be supported by IT systems that leverage AI. A global pandemic brings external change to an unprecedented level of unpredictability and severity of impact. Resilience therefore becomes an essential factor in most decisions when aiming at making and keeping them smart. In this chapter, we study the characteristics of resilient systems and test them with four use cases in a wide-ranging set of application areas. In all use cases, we highlight how AI can be used for data analysis to make smart decisions and contribute to the resilience of systems.
Several studies analyzed existing Web APIs against the constraints of REST to estimate the degree of REST compliance among state-of-the-art APIs. These studies revealed that only a small number of Web APIs are truly RESTful. Moreover, identified mismatches between theoretical REST concepts and practical implementations lead us to believe that practitioners perceive many rules and best practices aligned with these REST concepts differently in terms of their importance and impact on software quality. We therefore conducted a Delphi study in which we confronted eight Web API experts from industry with a catalog of 82 REST API design rules. For each rule, we let them rate its importance and software quality impact. As consensus, our experts rated 28 rules with high, 17 with medium, and 37 with low importance. Moreover, they perceived usability, maintainability, and compatibility as the most impacted quality attributes. The detailed analysis revealed that the experts saw rules for reaching Richardson maturity level 2 as critical, while reaching level 3 was less important. As the acquired consensus data may serve as valuable input for designing a tool-supported approach for the automatic quality evaluation of RESTful APIs, we briefly discuss requirements for such an approach and comment on the applicability of the most important rules.
The Internet of Things (IoT) is coined by many different standards, protocols, and data formats that are often not compatible to each other. Thus, the integration of different heterogeneous (IoT) components into a uniform IoT setup can be a time-consuming manual task. This lacking interoperability between IoT components has been addressed with different approaches in the past. However, only very few of these approaches rely on Machine Learning techniques. In this work, we present a new way towards IoT interoperability based on Deep Reinforcement Learning (DRL). In detail, we demonstrate that DRL algorithms, which use network architectures inspired by Natural Language Processing (NLP), can be applied to learn to control an environment by merely taking raw JSON or XML structures, which reflect the current state of the environment, as input. Applied to IoT setups, where the current state of a component is often reflected by features embedded into JSON or XML structures and exchanged via messages, our NLP DRL approach eliminates the need for feature engineering and manually written code for pre-processing of data, feature extraction, and decision making.
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain manufacturing processes to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges when applying these token-based approaches to dynamic manufacturing processes. As a first step, this paper investigates existing mapping approaches and exemplifies weaknesses regarding their suitability for products with changeable configurations. Secondly, a concept is proposed to overcome these weaknesses by introducing logically coupled tokens embedded into a flexible smart contract structure. Finally, a concept for a token-based architecture is introduced to map manufacturing processes of products with changeable configurations.
The current advancement of Artificial Intelligence (AI) combined with other digitalization efforts significantly impacts service ecosystems. Artificial intelligence has a substantial impact on new opportunities for the co-creation of value and the development of intelligent service ecosystems. Motivated by experiences and observations from digitalization projects, this paper presents new methodological perspectives and experiences from academia and practice on architecting intelligent service ecosystems and explores the impact of artificial intelligence through real cases supporting an ongoing validation. Digital enterprise architecture models serve as an integral representation of business, information, and technological perspectives of intelligent service-based enterprise systems to support management and development. This paper focuses on architectural models for intelligent service ecosystems, showing the fundamental business mechanism of AI-based value co-creation, the corresponding digital architecture, and management models. The focus of this paper presents the key architectural model perspectives for the development of intelligent service ecosystems.
The digitization of factories will be a significant issue for the 2020s. New scenarios are emerging to increase the efficiency of production lines inside the factory, based on a new generation of robots’ collaborative functions. Manufacturers are moving towards data-driven ecosystems by leveraging product lifecycle data from connected goods. Energy-efficient communication schemes, as well as scalable data analytics, will support these various data collection scenarios. With augmented reality, new remote services are emerging that facilitate the efficient sharing of knowledge in the factory. Future communication solutions should generally ensure connectivity between the various production sites spread worldwide and new players in the value chain (e.g., suppliers, logistics) transparent, real-time, and secure. Industry 4.0 brings more intelligence and flexibility to production. Resulting in more lightweight equipment and, thus, offering better ergonomics. 5G will guarantee real-time transmissions with latencies of less than 1 ms. This will provide manufacturers with new possibilities to collect data and trigger actions automatically.
Platforms and their surrounding ecosystems are becoming increasingly important components of many companies' strategies. Artificial Intelligence, in particular, has created new opportunities to create and develop ecosystems around the platform. However, there is not yet a methodology to systematically develop these new opportunities for enterprise development strategy. Therefore, this paper aims to lay a foundation for the conceptualization of Artificial Intelligence-based service ecosystems exploiting a Service-Dominant Logic. The basis for conceptualization is the study of value creation and particularly effective network effects. This research investigates the fundamental idea of extending specific digital concepts considering the influence of Artificial Intelligence on the design of intelligent services, along with their architecture of digital platforms and ecosystems, to enable a smooth evolutionary path and adaptability for human-centric collaborative systems and services. The paper explores an extended digital enterprise conceptual model through a combined, iterative, and permanent task of co-creating value between humans and intelligent systems as part of a new idea of cognitively adapted intelligent services.
In recent years, artificial intelligence (AI) has increasingly become a relevant technology for many companies. While there are a number of studies that highlight challenges and success factors in the adoption of AI, there is a lack of guidance for firms on how to approach the topic in a holistic and strategic way. The aim of this study is therefore to develop a conceptual framework for corporate AI strategy. To address this aim, a systematic literature review of a wide spectrum of AI-related research is conducted, and the results are analyzed based on an inductive coding approach. An important conclusion is that companies should consider diverse aspects when formulating an AI strategy, ranging from technological questions to corporate culture and human resources. This study contributes to knowledge by proposing a novel, comprehensive framework to foster the understanding of crucial aspects that need to be considered when using the emerging technology of AI in a corporate context.
Global, competitive markets which are characterised by mass customisation and rapidly changing customer requirements force major changes in production styles and the configuration of manufacturing systems. As a result, factories may need to be regularly adapted and optimised to meet short-term requirements. One way to optimise the production process is the adaptation of the plant layout to the current or expected order situation. To determine whether a layout change is reasonable, a model of the current layout is needed. It is used to perform simulations and in the case of a layout change it serves as a basis for the reconfiguration process. To aid the selection of possible measurement systems, a requirements analysis was done to identify the important parameters for the creation of a digital shadow of a plant layout. Based on these parameters, a method is proposed for defining limit values and specifying exclusion criteria. The paper thus contributes to the development and application of systems that enable an automatic synchronisation of the real layout with the digital layout.
Lehre und Lernen unterliegt einem stetigen Wandel, wobei Interaktion als ein zentrales Element der Motivationssteigerung im Lernkontext angesehen wird. Der vorliegende Beitrag zeigt verschiedene Ansätze zur Gestaltung von interaktivem und kollaborativem Lehren und Lernen in einem virtuellen Klassenzimmer auf und stellt ein Beispiel für die Umsetzung und den Einsatz eines solchen Systems vor. Die Mehrwerte und Erfolgsfaktoren, die sich beim Einsatz virtueller Klassenzimmer und deren Gestaltung in Form einer interaktiven blended-learning Umgebung ergeben, werden dargestellt und diskutiert. Mit dem System Accelerator wird eine CSILT (Computer Supported Interactive Learning and Teaching)-Umgebung vorgestellt, in der diese Faktoren zum Einsatz kommen.
Das Weltwirtschaftswachstum der vergangenen Jahrzehnte war durch die Dynamik der Digitalisierung und Globalisierung in den Lieferketten geprägt. Die Corona-Pandemie hat die Abhängigkeit und Verletzlichkeit der Lieferketten offengelegt. Trotz einer Vielzahl verbindlicher Standards haben Unternehmen die Digitalisierung und Arbeitsteilung auch für regulatorische Arbitrage genutzt. Einerseits erhöht das die Effizienz der Wirtschaft - was mithin ökologische Ressourcen schont - andererseits werden damit internationale Standards konterkariert. Globalisierung und Digitalisierung sind Segen und Fluch zugleich.
The article analyzes experimentally and theoretically the influence of microscope parameters on the pinhole-assisted Raman depth profiles in uniform and composite refractive media. The main objective is the reliable mapping of deep sample regions. The easiest to interpret results are found with low magnification, low aperture, and small pinholes. Here, the intensities and shapes of the Raman signals are independent of the location of the emitter relative to the sample surface. Theoretically, the results can be well described with a simple analytical equation containing the axial depth resolution of the microscope and the position of the emitter. The lower determinable object size is limited to 2–4 μm. If sub-micrometer resolution is desired, high magnification, mostly combined with high aperture, becomes necessary. The signal intensities and shapes depend now in refractive media on the position relative to the sample surface. This aspect is investigated on a number of uniform and stacked polymer layers, 2–160 μm thick, with the best available transparency. The experimental depth profiles are numerically fitted with excellent accuracy by inserting a Gaussian excitation beam of variable waist and fill fraction through the focusing lens area, and by treating the Raman emission with geometric optics as spontaneous isotropic process through the lens and the variable pinhole, respectively. The intersectional area of these two solid angles yields the leading factor in understanding confocal (pinhole-assisted) Raman depth profiles.
A hybrid deep registration of MR scans to interventional ultrasound for neurosurgical guidance
(2021)
Despite the recent advances in image-guided neurosurgery, reliable and accurate estimation of the brain shift still remains one of the key challenges. In this paper, we propose an automated multimodal deformable registration method using hybrid learning-based and classical approaches to improve neurosurgical procedures. Initially, the moving and fixed images are aligned using classical affine transformation (MINC toolkit), and then the result is provided to the convolutional neural network, which predicts the deformation field using backpropagation. Subsequently, the moving image is transformed using the resultant deformation into a moved image. Our model was evaluated on two publicly available datasets: the retrospective evaluation of cerebral tumors (RESECT) and brain images of tumors for evaluation (BITE). The mean target registration errors have been reduced from 5.35 ± 4.29 to 0.99 ± 0.22 mm in the RESECT and from 4.18 ± 1.91 to 1.68 ± 0.65 mm in the BITE. Experimental results showed that our method improved the state-of-the-art in terms of both accuracy and runtime speed (170 ms on average). Hence, the proposed method provides a fast runtime for 3D MRI to intra-operative US pair in a GPU-based implementation, which shows a promise for its applicability in assisting the neurosurgical procedures compensating for brain shift.
Purpose
Injury or inflammation of the middle ear often results in the persistent tympanic membrane (TM) perforations, leading to conductive hearing loss (HL). However, in some cases the magnitude of HL exceeds that attributable by the TM perforation alone. The aim of the study is to better understand the effects of location and size of TM perforations on the sound transmission properties of the middle ear.
Methods
The middle ear transfer functions (METF) of six human temporal bones (TB) were compared before and after perforating the TM at different locations (anterior or posterior lower quadrant) and to different degrees (1 mm, ¼ of the TM, ½ of the TM, and full ablation). The sound-induced velocity of the stapes footplate was measured using single-point laser-Doppler-vibrometry (LDV). The METF were correlated with a Finite Element (FE) model of the middle ear, in which similar alterations were simulated.
Results
The measured and calculated METF showed frequency and perforation size dependent losses at all perforation locations. Starting at low frequencies, the loss expanded to higher frequencies with increased perforation size. In direct comparison, posterior TM perforations affected the transmission properties to a larger degree than anterior perforations. The asymmetry of the TM causes the malleus-incus complex to rotate and results in larger deflections in the posterior TM quadrants than in the anterior TM quadrants. Simulations in the FE model with a sealed cavity show that small perforations lead to a decrease in TM rigidity and thus to an increase in oscillation amplitude of the TM mainly above 1 kHz.
Conclusion
Size and location of TM perforations have a characteristic influence on the METF. The correlation of the experimental LDV measurements with an FE model contributes to a better understanding of the pathologic mechanisms of middle-ear diseases. If small perforations with significant HL are observed in daily clinical practice, additional middle ear pathologies should be considered. Further investigations on the loss of TM pretension due to perforations may be informative.
Distributed ledger technologies such as the blockchain technology offer an innovative solution to increase visibility and security to reduce supply chain risks. This paper proposes a solution to increase the transparency and auditability of manufactured products in collaborative networks by adopting smart contract-based virtual identities. Compared with existing approaches, this extended smart contract-based solution offers manufacturing networks the possibility of involving privacy, content updating, and portability approaches to smart contracts. As a result, the solution is suitable for the dynamic administration of complex supply chains.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
Projektmanagement
(2020)
Projektmanagement ist ein Werkzeug um singuläre Aufgaben interdisziplinär und unternehmensübergreifend strukturiert zu bearbeiten, die einmalig und extrem bedeutsam für das Unternehmen sind sowie nicht einfach in der bestehenden Linienorganisation bearbeitet werden können. Unter Projektmanagement versteht man ein Konzept für die Leitung eines komplexen Vorhabens und die Institution, die dieses Vorhaben leitet.
Effektives Risiko-Management sollte neben quantifizierbaren, bekannten Risiken auch Ereignisse berücksichtigen, die entweder in ähnlicher Art bereits eingetreten oder grundsätzlich vorstellbar sind. Für eine Identifikation dieser "Grauen Schwäne" müssen institutionell-organisatorische Voraussetzungen geschaffen und analytisch-konzeptionelle Instrumente bereitgestellt werden.
Hypermedia as the Engine of Application State (HATEOAS) is one of the core constraints of REST. It refers to the concept of embedding hyperlinks into the response of a queried or manipulated resource to show a client possible follow-up actions and transitions to related resources. Thus, this concept aims to provide a client with a navigational support when interacting with a Web-based application. Although HATEOAS should be implemented by any Web-based API claiming to be RESTful, API providers tend to offer service descriptions in place of embedding hyperlinks into responses. Instead of relying on a navigational support, a client developer has to read the service description and has to identify resources and their URIs that are relevant for the interaction with the API. In this paper, we introduce an approach that aims to identify transitions between resources of a Web-based API by systematically analyzing the service description only. We devise an algorithm that automatically derives a URI Model from the service description and then analyzes the payload schemas to identify feasible values for the substitution of path parameters in URI Templates. We implement this approach as a proxy application, which injects hyperlinks representing transitions into the response payload of a queried or manipulated resource. The result is a HATEOAS-like navigational support through an API. Our first prototype operates on service descriptions in the OpenAPI format. We evaluate our approach using ten real-world APIs from different domains. Furthermore, we discuss the results as well as the observations captured in these tests.
We discuss the fabrication technologies for IC chips in this chapter. We will focus on the main process steps and especially on those aspects that are of particular importance for understanding how they affect, and in some cases drive, the layout of ICs. All our analyses in this chapter will be for silicon as the base material; the principles and understanding gained can be applied to other substrates as well. Following a brief introduction to the fundamentals of IC fabrication (Sect. 2.1) and the base material used in it, namely silicon (Sect. 2.2), we discuss the photolithography process deployed for all structuring work in Sect. 2.3. We will then present in Sect. 2.4 some theoretical opening remarks on typical phenomena encountered in IC fabrication. Knowledge of these phenomena is very useful for understanding the process steps we cover in Sects. 2.5–2.8. We examine a simple exemplar process in Sect. 2.9 and observe how a field-effect transistor (FET) – the most important device in modern integrated circuits—is created. To drive the key points home, we provide a review of each topic at the end of every section from the point of view of layout design by discussing relevant physical design aspects.
Additive Manufacturing is increasingly used in the industrial sector as a result of continuous development. In the Production Planning and Control (PPC) system, AM enables an agile response in the area of detailed and process planning, especially for a large number of plants. For this purpose, a concept for a PPC system for AM is presented, which takes into account the requirements for integration into the operational enterprise software system. The technical applicability will be demonstrated by individual implemented sections. The presented solution approach promises a more efficient utilization of the plants and a more elastic use.
Personalmanagement
(2020)
Auch wenn der Wert in keiner Bilanz auftaucht: das Humankapital entscheidet über den Unternehmenserfolg. Während Kapital im Überfluss vorhanden ist, ist das Personal zunehmend der Engpassfaktor. Wurde bis in die 1980er-Jahre der Mensch als Produktionsfaktor und die Personalabteilung als seine Verwaltungsinstanz gesehen, so ist die Personalarbeit heute ein integratives Element des Managementprozesses und die Personalabteilung aktiver Teil des Managementteams (Scholz 2014c). Damit verbunden ist der begriffliche Wandel von Personalwirtschaft bzw. Personalverwaltung hin zum Personalmanagement bzw. Human Ressource Management (HRM). Die Begriffe signalisieren eine stärker strategisch ausgerichtete Auseinandersetzung mit allen Fragen, die den Einsatz von Personal und die Verknüpfung der Personal- mit der Unternehmensstrategie zum Gegenstand haben.
Wichtige Aufgaben der Personalarbeit sind Personalplanung, Personalbeschaffung, Personalentwicklung, Personaleinsatz, Personalkostenmanagement, Personalführung. Diese werden in der Regel von unterschiedlichen Stellen wahrgenommen – neben der Personalabteilung spielen dabei auch die direkte Führungskraft sowie die Unternehmensleitung eine wichtige Rolle.
Context: Nowadays, companies are challenged by increasing market dynamics, rapid changes and disruptive participants entering the market. To survive in such an environment, companies must be able to quickly discover product ideas that meet the needs of both customers and the company and deliver these products to customers. Dual-track agile is a new type of agile development that combines product discovery and delivery activities in parallel, iterative, and cyclical ways. At present, many companies have difficulties in finding and establishing suitable approaches for implementing dual-track agile in their business context.
Objective: In order to gain a better understanding of how product discovery and product delivery can interact with each other and how this interaction can be implemented in practice, this paper aims to identify suitable approaches to dual-track agile.
Method: We conducted a grey literature review (GLR) according to the guidelines to Garousi et al.
Results: Several approaches that support the integration of product discovery with product delivery were identified. This paper presents a selection of these approaches, i.e., the Discovery-Delivery Cycle model, Now-Next-Later Product Roadmaps, Lean Sprints, Product Kata, and Dual-Track Scrum. The approaches differ in their granularity but are similar in their underlying rationales. All approaches aim to ensure that only validated ideas turn into products and thus promise to lead to products that are better received by their users.
Context: A product roadmap is an important tool in product development. It sets the strategic direction in which the product is to be developed to achieve the company’s vision. However, for product roadmaps to be successful, it is essential that all stakeholders agree with the company’s vision and objectives and are aligned and committed to a common product plan.
Objective: In order to gain a better understanding of product roadmap alignment, this paper aims at identifying measures, activities and techniques in order to align the different stakeholders around the product roadmap.
Method: We conducted a grey literature review according the guidelines to Garousi et al.
Results: Several approaches to gain alignment were identified such as defining and communicating clear objectives based on the product vision, conducting cross-functional workshops, shuttle diplomacy, and mission briefing. In addition, our review identified the “Behavioural Change Stairway Model” that suggests five steps to gain alignment by building empathy and a trustful relationship.
A fast way to test business ideas and to explore customer problems and needs is to talk to them. Customer interviews help to understand what solutions customers will pay for before investing valuable resources to develop solutions. Customer interviews are a good way to gain qualitative insights. However, conducting interviews can be a difficult procedure and requires specific skills. The current ways of teaching interview skills have significant deficiencies. They especially lack guidance and opportunities to practice. Objective: The goal of this work is to develop and validate a workshop format to teach interview skills for conducting good customer interviews in a practical manner. Method: The research method is based on design science research which serves as a framework. A game-based workshop format was designed to teach interview skills. The approach consists of a half-day, hands-on workshop and is based on an analysis of necessary interview skills. The approach has been validated in several workshops and improved based on learnings from those workshops. Results: Results of the validation show that participants could significantly improve their interview skills while enjoying the game-based exercises. The game-based learning approach supports learning and practicing customer interview skills with playful and interactive elements that encourage greater motivation among participants to conduct interviews.
Today, many companies are adapting their strategy, business models, products, services as well as business processes and information systems in order to expand their digitalization level through intelligent systems and services. The paper raises an important question: What are cognitive co-creation mechanisms for extending digital services and architectures to readjust the usage value of smart services? Typically, extensions of digital services and products and their architectures are manual design tasks that are complex and require specialized, rare experts. The current publication explores the basic idea of extending specific digital artifacts, such as intelligent service architectures, through mechanisms of cognitive co-creation to enable a rapid evolutionary path and better integration of humans and intelligent systems. We explore the development of intelligent service architectures through a combined, iterative, and permanent task of co-creation between humans and intelligent systems as part of a new concept of cognitively adapted smart services. In this paper, we present components of a new platform for the joint co-creation of cognitive services for an ecosystem of intelligent services that enables the adaptation of digital services and architectures.
Intelligent systems and services are the strategic targets of many current digitalization efforts and part of massive digital transformations based on digital technologies with artificial intelligence. Digital platform architectures and ecosystems provide an essential base for intelligent digital systems. The paper raises an important question: Which development paths are induced by current innovations in the field of artificial intelligence and digitalization for enterprise architectures? Digitalization disrupts existing enterprises, technologies, and economies and promotes the architecture of cognitive and open intelligent environments. This has a strong impact on new opportunities for value creation and the development of intelligent digital systems and services. Digital technologies such as artificial intelligence, the Internet of Things, service computing, cloud computing, blockchains, big data with analysis, mobile systems, and social business network systems are essential drivers of digitalization. We investigate the development of intelligent digital systems supported by a suitable digital enterprise architecture. We present methodological advances and an evolutionary path for architectures with an integral service and value perspective to enable intelligent systems and services that effectively combine digital strategies and digital architectures with artificial intelligence.
While many maintainability metrics have been explicitly designed for service-based systems, tool-supported approaches to automatically collect these metrics are lacking. Especially in the context of microservices, decentralization and technological heterogeneity may pose challenges for static analysis. We therefore propose the modular and extensible RAMA approach (RESTful API Metric Analyzer) to calculate such metrics from machine-readable interface descriptions of RESTful services. We also provide prototypical tool support, the RAMA CLI, which currently parses the formats OpenAPI, RAML, and WADL and calculates 10 structural service-based metrics proposed in scientific literature. To make RAMA measurement results more actionable, we additionally designed a repeatable benchmark for quartile-based threshold ranges (green, yellow, orange, red). In an exemplary run, we derived thresholds for all RAMA CLI metrics from the interface descriptions of 1,737 publicly available RESTful APIs. Researchers and practitioners can use RAMA to evaluate the maintainability of RESTful services or to support the empirical evaluation of new service interface metrics.
Cloud resources can be dynamically provisioned according to application-specific requirements and are payed on a per-use basis. This gives rise to a new concept for parallel processing: Elastic parallel computations. However, it is still an open research question to which extent parallel applications can benefit from elastic scaling, which requires resource adaptation at runtime and corresponding coordination mechanisms. In this work, we analyze how to address these system-level challenges in the context of developing and operating elastic parallel tree search applications. Based on our findings, we discuss the design and implementation of TASKWORK, a cloud-aware runtime system specifically designed for elastic parallel tree search, which enables the implementation of elastic applications by means of higher-level development frameworks. We show how to implement an elastic parallel branch-and-bound application based on an exemplary development framework and report on our experimental evaluation that also considers several benchmarks for parallel tree search.
The advent of chatbots in customer service solutions received increasing attention by research and practice throughout the last years. However, the relevant dimensions and features for service quality and service performance for chatbots remain quite unclear. Therefore, this research develops and tests a conceptual model for customer service quality and customer service performance in the context of chatbots. Additionally, the impact of the developed service dimensions on different customer relationship metrics is measured across different service channels (hotline versus chatbots). Findings of six independent studies indicate a strong main effect of the conceptualized service dimensions on customer satisfaction, service costs, intention to service reusage, word-of-mouth, and customer loyalty. However, different service dimensions are relevant for chatbots compared to a traditional service hotline.
The livestock sector is growing steadily and is responsible for around 18% of global greenhouse‐gas‐emissions, which is more than the global transport sec-tor (Steinfeld et al. 2006). This paper examines the potential of social marketing to reduce meat consumption. The aim is to understand consumers’ motivation in diet choices and to learn what opportunities social marketing can provide to counteract negative environmental and health trends. The authors believe that research to answer this question should start in metropolitan areas, be-cause measures should be especially effective there. Based on the Theory of Planned Behaviour (TPB, Ajzen 1991) and the Technology‐Acceptance‐Model by Huijts et al. (2012), an online‐study with participants from the metropolitan region (n = 708) was conducted in which central socio‐psychological constructs for a meat consumption reduction were examined. It was shown that attitude, personal norm and habit have a critical influence on the intention to reduce meat consumption. A segmentation of consumers based on these factors led to three consumer clusters: vegetarians/flexitarians, potential flexitarians and convinced meat eaters. Potential flexitarians are an especially relevant target group for the development of social‐marketing‐measures to reduce meat consumption. In co‐creation‐workshops with potential flexitarians from the metropolitan region, barriers and benefits of reducing meat consumption were identified. The factors of environmental protection, animal welfare and desire for variety turn out to be the most relevant motivational factors. Based on these factors, consumers proposed a variety of social marketing measures, such as applications and labels to inform about the environmental impact of meat products.
Exogenous factors of influence on exhaled breath analysis by ion-mobility spectrometry (MCC/IMS)
(2019)
The interpretation of exhaled breath analysis needs to address to the influence of exogenous factors, especially to a transfer of confounding analytes by the test persons. A test person who was exposed to a disinfectant had exhaled breath analysis by MCC/IMS (Bioscout®) after different time intervals. Additionally, a new sampling method with inhalation of synthetic air before breath analysis was tested. After exposure to the disinfectant, 3-Pentanone monomer, 3-Pentanone dimer, Hexanal, 3-Pentanone trimer, 2-Propanamine, 1-Propanol, Benzene, Nonanal showed significantly higher intensities, in exhaled breath and air of the examination room, compared to the corresponding baseline measurements. Only one ingredient of the disinfectant (1-Propanol) was identical to the 8 analytes. Prolonging the time intervals between exposure and breath analysis showed a decrease of their intensities. However, the half-time of the decrease was different. The inhalation of synthetic air - more than consequently airing the examination room with fresh air - reduced the exogenous and also relevant endogenous analytes, leading to a reduction and even changing polarity of the alveolar gradient. The interpretation of exhaled breath needs further knowledge about the former residence of the proband and the likelihood and relevance of the inhalation of local, site-specific and confounding exogenous analytes by him. Their inhalation facilitates a transfer to the examination room and a detection of high concentrations in room air and exhaled breath, but also the exhalation of new analytes. This may lead to a misinterpretation of these analytes as endogenous resp. disease-specific ones.
Standardisation of breath sampling is important for application of breath analysis in clinical settings. By studying the effect of room airing on indoor and breath analytes and by generating time series of room air with different sampling intervals we sought to get further insights into room air metabolism, to detect the relevance of exogenous VOCs and to make conclusions about their consideration for the interpretation of exhaled breath. Room air and exhaled breath of a healthy subject were analysed before and after room airing. Furthermore a time series of room air with doors and windows closed was taken over 84 h by an automatic sampling every 180 min. A second times series studied room air analytes over 70 h with samples taken every 16.5 min. For breath and room air measurements an IMS coupled to a multi-capillary column (IMS/MCC) [Bio-Scout® - B&S Analytik GmbH, Dortmund, Germany] was used. The peaks were characterized using the Software Visual Now (B&S Analytik, Dortmund Germany) and identified using the software package MIMA (version 1.1, provided by the Max Planck Institute for Informatics, Saarbrücken, Germany) and the database 20160426_SubstanzDbNIST_122 (B & S Analytik GmbH, Dortmund, Germany). In the morning 4 analytes (Decamethylcylopentasiloxane [541-02-6]; Pentan-2-one [107-87-9] – Dimer; Hexan-1-al [66-25-1]; Pentan-2-one [107-87-9]) – Monomer showed high intensities in the room air and exhaled breath. They were significantly but not equally reduced by room airing. The time series about 84 h showed a time dependent decrease of analytes (limonen-monomer and -dimer; Decamethylcylopentasiloxane, Butan-1-ol, Butan-1-ol) as well as increase (Pentan-2-one [107-87-9] – Dimer). Shorter sampling intervals exhibited circadian variations of analyte concentrations for many analytes. Breath sampling in the morning needs room airing before starting. Then the variation of the intensity of indoor analytes can be kept small. The time series of indoor analytes show, that their intensities have a different behaviour, with time dependent declines, constant increases and circadian variations, dependent on room airing. This has implications on the breath sampling procedure and the intrepretation of exhaled breath.
Companies are becoming aware of the potential risks arising from sustainability aspects in supply chains. These risks can affect ecological, economic or social aspects. One important element in managing those risks is improved transparency in supply chains by means of digital transformation. Innovative technologies like blockchain technology can be used to enforce transparency. In this paper, we present a smart contract-based Supply Chain Control Solution to reduce risks. Technological capabilities of the solution will be compared to a similar technology approach and evaluated regarding their benefits and challenges within the framework of supply chain models. As a result, the proposed solution is suitable for the dynamic administration of complex supply chains.
Investigation of tympanic membrane influences on middle-ear impedance measurements and simulations
(2020)
This study simulates acoustic impedance measurements in the human ear canal and investigates error influences due to improperly accounted evanescence in the probe’s near field, cross-section area changes, curvature of the ear canal, and pressure inhomogeneities across the tympanic membrane, which arise mainly at frequencies above 10 kHz. Evanescence results from strongly damped modes of higher order, which can only be found in the near field of the sound source and are excited due to sharp cross-sectional changes as they occur at the transition from the probe loudspeaker to the ear canal. This means that different impedances are measured depending on the probe design. The influence of evanescence cannot be eliminated completely from measurements, however, it can be reduced by a probe design with larger distance between speaker and microphone. A completely different approach to account for the influence of evanescence is to evaluate impedance measurements with the help of a finite element model, which takes the precise arrangement of microphone and speaker in the measurement into account. The latter is shown in this study exemplary on impedance measurements at a tube terminated with a steel plate. Furthermore, the influences of shape changes of the tympanic membrane and ear canal curvature on impedance are investigated.
Purpose: Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid attenuated inversion recovery (FLAIR) MRI modality can provide the physician with information about tumor infiltration. Therefore, this paper proposes a new generic deep learning architecture, namely DeepSeg, for fully automated detection and segmentation of the brain lesion using FLAIR MRI data.
Methods: The developed DeepSeg is a modular decoupling framework. It consists of two connected core parts based on an encoding and decoding relationship. The encoder part is a convolutional neural network (CNN) responsible for spatial information extraction. The resulting semantic map is inserted into the decoder part to get the full-resolution probability map. Based on modified U-Net architecture, different CNN models such as residual neural network (ResNet), dense convolutional network (DenseNet), and NASNet have been utilized in this study.
Results: The proposed deep learning architectures have been successfully tested and evaluated on-line based on MRI datasets of brain tumor segmentation (BraTS 2019) challenge, including s336 cases as training data and 125 cases for validation data. The dice and Hausdorff distance scores of obtained segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly.
Conclusion: This study showed successful feasibility and comparative performance of applying different deep learning models in a new DeepSeg framework for automated brain tumor segmentation in FLAIR MR images. The proposed DeepSeg is open source and freely available at https://github.com/razeineldin/DeepSeg/.