Refine
Document Type
- Article (38)
- Part of a Book (13)
- Conference Proceeding (1)
- Review (1)
Language
- English (53)
Is part of the Bibliography
- yes (53)
Institute
- Angewandte Chemie (53) (remove)
Publisher
- Elsevier (53) (remove)
The development of in vitro adipose tissue constructs is highly desired to cope with the increased demand for substitutes to replace damaged soft tissue after high graded burns, deformities or tumor removal. To achieve clinically relevant dimensions, vascularization of soft tissue constructs becomes inevitable but still poses a challenge. Adipose-derived stem cells (ASCs) represent a promising cell source for the setup of vascularized fatty tissue constructs as they can be differentiated into adipocytes and endothelial cells in vitro and are thereby available in sufficiently high cell numbers.
This review summarizes the currently known characteristics of ASCs and achievements in adipogenic and endothelial differentiation in vitro. Further, the interdependency of adipogenesis and angiogenesis based on the crosstalk of endothelial cells, stem cells and adipocytes is addressed at the molecular level. Finally, achievements and limitations of current co-culture conditions for the construction of vascularized adipose tissue are evaluated.
Age-dependent migratory behavior of human endothelial cells revealed by substrate microtopography
(2019)
Cell migration is part of many important in vivo biological processes and is influenced by chemical and physical factors such as substrate topography. Although the migratory behavior of different cell types on structured substrates has already been investigated, up to date it is largely unknown if specimen's age affects cell migration on structures. In this work, we investigated age-dependent migratory behavior of human endothelial cells from young (≤ 31 years old) and old (≥ 60 years old) donors on poly(dimethylsiloxane) microstructured substrates consisting of well-defined parallel grooves. We observed a decrease in cell migration velocity in all substrate conditions and in persistence length perpendicular to the grooves in cells from old donors. Nevertheless, in comparison to young cells, old cells exhibited a higher cell directionality along grooves of certain depths and a higher persistence time. We also found a systematic decrease of donor age dependent responses of cell protrusions in orientation, velocity and length, all of them decreased in old cells. These observations lead us to hypothesize a possible impairment of actin cytoskeleton network and affected actin polymerization and steering systems, caused by aging.
Allyls
(2014)
This chapter addresses the importance and usage of the commercially low volume thermoset plastics group known as allyls. The three significant sub-elements of this group are poly(diallylphthalates), poly(diallylisophthalates), and poly(allyldiglycol carbonate). Chemistry, processing, and properties are also described. Allyl polymers are synthesized by radical polymerizations of allyl monomers that usually do not produce high-molecular-mass macromolecules. Therefore, only a few specific monomers can produce thermosetting materials. Diallyldiglycolcarbonate (CR-39) and diallylphthalates are the most significant examples that have considerably improved our everyday life.
Allyls
(2022)
This chapter addresses the importance and usage of the commercially low-volume thermoset plastics group known as allyls. The three significant subelements of this group are poly(diallylphthalates), poly(diallylisophthalates), and poly(allyldiglycol carbonate). Chemistry, processing, and properties are also described. Allyl polymers are synthesized by radical polymerizations of allyl monomers that usually do not produce high-molecular-mass macromolecules. Therefore only a few specific monomers can produce thermosetting materials. Diallyldiglycolcarbonate (CR-39) and diallylphthalates are the most significant examples that have considerably improved our everyday life.
We report an investigation into the distribution of copper oxidation states in oxide films formed on the surfaces of technical copper. The oxide films were grown by thermal annealing at ambient conditions and studied using Auger depth profiling and UV–Vis spectroscopy. Both Auger and UV–Vis data were evaluated applying multivariate curve resolution (MCR). Both experimental techniques revealed that the growth of Cu2O dominates the initial ca. 40 nm of oxide films grown at 175 °C, while further oxide growth is dominated by CuO formation. The largely coincident results from both experimental approaches demonstrates the huge benefit of the application of UV–Vis spectroscopy in combination with MCR analysis, which provides access to information on chemical state distributions without the need for destructive sample analysis. Both approaches are discussed in detail.
Propofol is a commonly used intravenous general anesthetic. Multi-capillary column (MCC) coupled ion-mobility spectrometry (IMS) can be used to quantify exhaled propofol, and thus estimate plasma drug concentration. Here, we present results of the calibration and analytical validation of a MCC/IMS pre-market prototype for propofol quantification in exhaled air.
In vitro cultured cells produce a complex extracellular matrix (ECM) that remains intact after decellularization. The biological complexity derived from the variety of distinct ECM molecules makes these matrices ideal candidates for biomaterials. Biomaterials with the ability to guide cell function are a topic of high interest in biomaterial development. However, these matrices lack specific addressable functional groups, which are often required for their use as a biomaterial. Due to the biological complexity of the cell-derived ECM, it is a challenge to incorporate such functional groups without affecting the integrity of the biomolecules within the ECM. The azide-alkyne cycloaddition (click reaction, Huisgen-reaction) is an efficient and specific ligation reaction that is known to be biocompatible when strained alkynes are used to avoid the use of copper (I) as a catalyst. In our work, the ubiquitous modification of a fibroblast cell-derived ECM with azides was achieved through metabolic oligosaccharide engineering by adding the azide-modified monosaccharide Ac4GalNAz (1,3,4,6 tetra-O-acetyl-N-azidoacetylgalactosamine) to the cell culture medium. The resulting azide-modified network remained intact after removing the cells by lysis and the molecular structure of the ECM proteins was unimpaired after a gentle homogenization process. The biological composition was characterized in order to show that the functionalization does not impair the complexity and integrity of the ECM. The azides within this ‘‘clickECM” could be accessed by small molecules (such as an alkyne modified fluorophore) or by surface-bound cyclooctynes to achieve a covalent coating with clickECM.
Comments on “Solubility parameter of chitin and chitosan”, Carbohydrate Polymers 36 (1998) 121–127
(2017)
Results on the solubility parameters of chitin and chitosan presented in the paper DOI: 10.1016/S0144-8617(98)00020-4 were recalculated and data evaluation was redone. A number of misprints, erroneous calculations and data evaluations were found with respect to Hansen as well as total solubility parameters as derived according to group contribution methods by Hoftyzer-Van Krevelen and Hoy’s system. Revised numerical data are presented.
In vitro models of human adipose tissue may serve as beneficial alternatives to animal models to study basic biological processes, identify new drug targets, and as soft tissue implants. With this approach, we aimed to evaluate adipose-derived stem cells (ASC) and mature adipocytes (MA) comparatively for the application in the in vitro setup of adipose tissue constructs to imitate native adipose tissue physiology. We used human primary MAs and human ASCs, differentiated for 14 days, and encapsulated them in collagen type I hydrogels to build up a three-dimensional (3D) adipose tissue model. The maintenance of the models was analyzed after seven days based on a viability staining. Further, the expression of the adipocyte specific protein perilipin A and the release of leptin and glycerol were evaluated. Gene transcription profiles of models based on dASCs and MAs were analyzed with regard to native adipose tissue. Compared to MAs, dASCs showed an immature differentiation state. Further, gene transcription of MAs suggests a behavior closer to native tissue in terms of angiogenesis, which supports MAs as preferred cell type. In contrast to native adipose tissue, genes of de novo lipogenesis and tissue remodeling were upregulated in the in vitro attempts.
Bone homeostasis is maintained by osteoblasts (bone formation) and osteoclasts (bone resorption). While there have been numerous studies investigating mesenchymal stem cells and their potential to differentiate into osteoblasts as well as their interaction with different bone substitute materials, there is only limited knowledge concerning in vitro generated osteoclasts. Due to the increasing development of degradable bone-grafting materials and the need of sophisticated in vitro test methods, it is essential to gain deeper insight into the process of osteoclastogenesis and the resorption functionality of human osteoclasts. Therefore, we focused on the comparison of osteoclastogenesis and resorption activity on tissue culture polystyrene (TCPS) and bovine extracellular bone matrices (BMs). Cortical bone slices were used as two-dimensional (2D) substrates, whereas a thermally treated cancellous bone matrix was used for three-dimensional (3D) experiments. We isolated primary human monocytes and induced osteoclastogenesis by medium supplementation. Subsequently, the expression of the vitronectin receptor (αVβ3) and cathepsin K as well as the characteristic actin formation on TCPS and the two BMs were examined. The cell area of human osteoclasts was analyzed on TCPS and on BMs, whereas significantly larger osteoclasts could be detected on BMs. Additionally, we compared the diameter of the sealing zones with the measured diameter of the resorption pits on the BMs and revealed similar diameters of the sealing zones and the resorption pits. We conclude that using TCPS as culture substrate does not affect the expression of osteoclast-specific markers. The analysis of resorption activity can successfully be conducted on cortical as well as on cancellous bone matrices. For new in vitro test systems concerning bone resorption, we suggest the establishment of a 2D assay for high throughput screening of new degradable bone substitute materials with osteoclasts.
In thermopervaporation the same economically favorable driving force as in membrane distillation, i.e., a temperature difference between feed and permeate for the transport, is used but with non-porous thin-film composite membranes. Membrane pores cannot be wetted and long-term operational stability can be achieved with the appropriate coating layer, but normally with a decrease of the flux compared to membrane distillation with porous hydrophobic membranes.
Porous asymmetric PVDF membranes were made to achieve low permeation resistance and pores which could be overcoated with polyelectrolyte polymers. This coating prohibits pore wetting and strongly reduces adsorption of organic substances.
Those membranes showed a high permeation rate for water due to a structure of phase-separated hydrophilic and hydrophobic three-dimensional domains. The permeation rates of these composite membranes for water is between 6 and 12 l/(h m²) at a feed temperature of 60 °C and permeate at a temperature of 40 °C of a 2% saline solution feed depending on the operational parameters. This is only a slight reduction of 10–15% in permeation rate compared to membrane distillation with porous hydrophobic membranes.
In whey dewatering experiment this membrane showed a constant performance over 4 days in intermittent operation mode and stability in cleaning with strong alkaline solution.
Background aims: In vitro engineered adipose tissue is in great demand to treat lost or damaged soft tissue or to screen for new drugs, among other applications.However, today most attempts depend on the use of animal-derived sera. To pave the way for the application of adipose tissue-engineered
products in clinical trials or as reliable and robust in vitro test systems, sera should be completely excluded from the production process. In this study, we aimed to develop an in vitro adipose tissue model in the absence of sera and maintain its function long-term.
Methods: Human adipose tissue-derived stem cells were expanded and characterized in a xeno- and serum-free environment. Adipogenic differentiation was induced using a completely defined medium. Developed adipocytes were maintained in a completely defined maturation medium for additional 28 days. In addition to cell-viability and adherence, adipocyte-specific markers such as perilipin A expression of leptin release were evaluated.
Results: The defined differentiation medium enhanced cell adherence and lipid
accumulation at a significant level compared with the corresponding negative control. The defined maturation medium also significantly supported cell adherence and functional adipocyte maturation during the long-term culture period.
Conclusions: The process described here enables functional adipocyte generation and maintenance without the addition fo unknown or unimal-derived constituents, achieving an important milestone in the introduction of adipose tissue engineered products into clinical trials or in vitro screening.
Cross-linked thermoplastics
(2022)
Cross-linked thermoplastics represent an important class of materials for numerous applications such as heat-shrinkable tubing, rotational molded parts, and polyolefin foams. By cross-linking olefins, their mechanical performance can be significantly enhanced. This chapter covers the three main methods for the cross-linking of thermoplastics: radiation cross-linking, chemical cross-linking with organic peroxides, and cross-linking using silane-grafting agents. It also considers the major effects of the cross-linking procedure on the performance of the thermoplastic materials discussed.
Crosslinked thermoplastics
(2014)
Cross-linked thermoplastics represent an important class of materials for numerous applications such as heat-shrinkable tubing, rotational molded parts, and polyolefin foams. By cross-linking olefins, their mechanical performance can be significantly enhanced. This chapter covers the three main methods for the cross-linking of thermoplastics: radiation cross-linking, chemical cross-linking with organic peroxides, and cross-linking using silane-grafting agents. It also considers the major effects of the cross-linking procedure on the performance of the thermoplastic materials discussed.
Cyanate ester resins
(2022)
Cyanate ester resins are an important class of thermosetting compounds that experience an ever-increasing interest as matrix systems for advanced polymer composite materials, which among other application fields are especially suitable for highly demanding applications in the aerospace or microelectronics industries. Other names for cyanate ester resins are cyanate resins, cyanic esters, or triazine resins. The various types of cyanate ester monomers share the –OCN functional group that trimerizes in the course of resin formation to yield a highly branched heterocyclic polymeric network based on the substituted triazine core structure.
Cyanate esters
(2014)
Cyanate ester resins are an important class of thermosetting compounds that have experienced an ever-increasing interest as matrix systems for advanced polymer composite materials, which among other applications, are especially suitable for highly demanding functions in the aerospace or microelectronics industries. Other names for cyanate ester resins are cyanate resins, cyanic esters, or triazine resins. The various types of cyanate ester monomers share the aOCN functional group that trimerizes in the course of resin formation to yield a highly branched heterocyclic polymeric network based on the substituted triazine core structure. The basic reaction sequence leading to the typical cyanate ester polymer molecule is depicted in Figure 11.1. The curing reaction may take place with or without catalyst.
The data present in this article affords insides in the characterization of a newly described bi-functional furan-melamine monomer, which is used for the production of monodisperse, furan-functionalized melamine formaldehyde particles. In the related research article Urdl et al., 2019 data interpretations can be found. The furan functionalization of particles is necessary to perform reversible Diels-Alder reactions with maleimide (BMI) crosslinker to form thermoreversible network systems. To understand the reaction conditions of Diels Alder (DA) reaction with a Fu-Mel monomer and a maleimide crosslinker, model DA reaction were performed and evaluated using dynamic FT-IR measurements. During retro Diels-Alder (rDA) reactions of the monomer system, it was found out that some side reaction occurred at elevated temperatures. The data of evaluating the side reaction is described in one part of this manuscript. Additional high resolution SEM images of Fu Mel particles are shown and thermoreversible particle networks with BMI2 are shown. The data of different Fu-Mel particle networks with maleimide crosslinker are presented. Therefore, the used maleimide crosslinker with different spacer lengths were synthesized and the resulting networks were analyzed by ATR-FT-IR, SEM and DSC.
This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled “Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application” (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4′-Methylenbis(cyclohexylisocyanate) (H12MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]).
Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight of 3000 g mol−1. Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1H NMR and 29Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article.
Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article.
Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.
The self-healing effect of melamine-based surfaces, triggered by temperature, was investigated. The temperature triggered reversible healing chemistry, on which the self-healing effect is based, was the Diels-Alder (DA) reaction between furan and malemeide groups. Melamine-furan containing building blocks were connected by multi-functional maleimide crosslinker via a Diels-Alder (DA) reaction to giva a DA adduct. The DA adduct was then reacted with formaldehyde to form a network by conventional condensation reaction of melamine amino groups with formaldehyde. The obtained resin was characterised and used for the impregnation of paper. Impregnated papers and neat resin werde used to perform scratch-healing tests and mechanical analysis of the novel coating system.
Palladium-doped silica materials with SiCH3 groups were fabricated by sol-gel method under various calcination atmospheres and membranes were made thereof by coating process. The results showed that air atmosphere can lead to the partial oxidation of metallic Pd0 to PdO while N2 and H2 atmospheres can effectively prevent metallic Pd0 from being oxidized. H2 atmosphere is proved to be a more prominent way to slow down the decomposition of organic SiCH3 group than N2 and air atmospheres. The surface area, micropore volume and porosity of palladium-doped silica membrane material calcined in H2 atmosphere are much higher than those calcined in N2 atmosphere. Compared with N2 atmosphere, the palladium-doped silica membranes calcined in H2 atmosphere showed higher H2 permeability and H2/CO2 selectivity before and after the steam exposure. The apparent activation energy of H2 permeation through the palladium-doped silica membrane calcined under H2 atmosphere (2.51 ± 0.05 kJ/mol) was slightly lower than that calcined under N2 atmosphere (2.84 ± 0.04 kJ/mol). Calcination atmosphere plays some role in membrane performance, which has greater influence on the permeance than on the gas permselectivity. Calcination under H2 atmosphere is well conducive to improve the gas permeance and H2 permselectivity of palladium-doped silica membrane.
In vitro composed vascularized adipose tissue is and will continue to be in great demand e.g. for the treatment of extensive high-graded burns or the replacement of tissue after tumor removal. Up to date, the lack of adequate culture conditions, mainly a culture medium, decelerates further achievements. In our study, we evaluated the influence of epidermal growth factor (EGF) and hydrocortisone (HC), often supplemented in endothelial cell (EC) specific media, on the co-culture of adipogenic differentiated adipose derived stem cells (ASCs) and microvascular endothelial cells (mvECs). In ASCs, EGF and HC are thought to inhibit adipogenic differentiation and have lipolytic activities. Our results showed that in indirect co-culture for 14 days, adipogenic differentiated ASCs further incorporated lipids and partly gained an univacuolar morphology when kept in media with low levels of EGF and HC. In media with high EGF and HC levels, cells did not incorporate further lipids, on the contrary, cells without lipid droplets appeared. Glycerol release, to measure lipolysis, also increased with elevated amounts of EGF and HC in the culture medium. Adipogenic differentiated ASCs were able to release leptin in all setups. MvECs were functional and expressed the cell specific markers, CD31 and von Willebrand factor (vWF), independent of the EGF and HC content as long as further EC specific factors were present. Taken together, our study demonstrates that adipogenic differentiated ASCs can be successfully co-cultured with mvECs in a culture medium containing low or no amounts of EGF and HC, as long as further endothelial cell and adipocyte specific factors are available.
Hypothesis
The origin of negative surface charge at water/air interface is still not clear. The most probable origin is specific adsorption of OH− ions. From diffuse layer potential, we can evaluate the surface density of ions in the Stern layer which can be a measure for the specific adsorption of ions and determines whether the surface charge is solely due to the specific adsorption of OH− ions.
Experiments
Equilibrium thickness of foam films of pure water and aqueous solutions of NaCl, HCl, and NaOH was measured as a function of disjoining pressure for water and as a function of concentration for the aqueous solutions at 298.15 K. Quartz-glass cells thoroughly cleaned and immersed in pure water before use were used for the measurement.
Findings
Application of a modified Poisson-Boltzmann equation to the equilibrium film thickness gave the diffuse layer potential and the surface density of ions in the Stern layer. From the concentration dependence of the surface density, it was concluded that not only OH− ions but also Cl− ions and HCO3− and/or CO32− ions adsorb specifically at the water/air interface.
Polyethylene glycol (PEG) is a widely used modification for drug delivery systems. It reduces undesired interaction with biological components, aggregation of complexes and serves as a hydrophilic linker of ligands for targeted drug delivery. However, PEGylation can also lead to undesired changes in physicochemical characteristics of chitosan/siRNA nanoplexes and hamper gene silencing.
To address this conflicting issue, PEG-chitosan copolymers were synthesized with stepwise increasing degrees of PEG substitution (1.5% to 8.0%). Subsequently formed PEG-chitosan/siRNA nanoplexes were characterized physicochemically and biologically. The results showed that small ratios of chitosan PEGylation did not affect nanoplex stability and density. However, higher PEGylation ratios reduced nanoplex size and charge, as well as cell uptake and final siRNA knockdown efficiency.
Therefore, we recommend fine-tuning of PEGylation ratios to generate PEG-chitosan/siRNA delivery systems with maximum bioactivity. The degree of PEGylation for chitosan/siRNA nanoplexes should be kept low in order to maintain optimal nanoplex efficiency.
Functionalised particles are highly requested in materials research, as they can be used as vital components in many advanced applications such as smart materials, functional coatings, drug carrier systems or adsorption materials. In this study, furan-functionalised melamine-formaldehyde (MF) particles were successfully prepared for the first time using an organic sol-gel process. Commercially available 2-Aminomethylfuran (AMF) and 2-Aminomethyl-5-methylfuran (AMMF) were used as modifying agents. In the isolated polymer particles, a melamine (M) to modifying agent ratio of M:AMF mol/mol 2.04:1 and M:AMMF ratio of mol/mol 1.25:1 was used. The obtained particles were isolated in various centrifugation and re-dispersion cycles and analysed using ATR-FT-IR, Raman and solid state 13C NMR spectroscopy, TGA, SEM and DSC measurements. Upon functionalisation the size of the MF particles increased (MF 1.59 µm, 27% CV (coefficient of variation); MF-AMF 2.56 µm, 25% CV; MF-AMMF 2.20 µm, 35% CV). DSC measurements showed that another type of exothermic residual reactivity besides condensation-based curing takes place with the furan-modified particles that is not related to the liberation of volatile compounds. The newly obtained particles are able to undergo Diels-Alder reactions with maleimide groups. The characteristic IR and Raman absorbance bands of the reaction products after the particles were reacted with 4,4′-Diphenylmethanebismaleimide reagent confirm the formation of a Diels-Alder adduct.
Homogeneous and monodispersed furan functionalised melamine-formaldehyde particles were produced. As a precursor, 2-chloro-1,3,5-triazine-2,4-diamine (Mel) was selectively substituted with 2-aminomethyl furan (Fu) units in a convenient one step reaction. The pure reaction product Fu-Mel, which was used without further purification, was reacted with formaldehyde by conventional sol-gel condensation in aqueous medium to yield chemically homogenous, spherically shaped and monodispersed particles. The particles were analysed using ATR-FT-IR, Raman, 1H and 13C NMR spectroscopy, TGA, SEM and DSC measurements. The reactivity of the furan groups located at the particle surface was studied by performing a thermoreversible Diels-Alder cycloaddition reaction with bis-maleimide coupling agents. The formed networks showed thermoreversible behaviour, which was characterised by dynamic IR and DSC measurements.
Concrete is significant for construction. A problem in application is the appearance of cracks that will damage its strength. An autogenous crack-healing mechanism based on bacteria receives increasing attention in recent years. The bacteria are able to form calcium carbonate (CaCO3) precipitations in suitable conditions to protect and reinforce the concrete. However, a large number of spores are crushed in aged specimens, resulting in a loss of viability. A new kind of hydrogel crosslinked by alginate, chitosan and calcium ions was introduced in this study. It was observed that the addition of chitosan improved the swelling properties of calcium alginate. Opposite pH response to calcium alginate was observed when the chitosan content in the solution reached 1.0%. With an addition of 1.0% chitosan in hydrogel beads, 10.28% increase of compressive strength and 13.79% increase of flexural strength to the control were observed. The results reveal self-healing properties of concretes. A healing crack of 4 cm length and 1 mm width was observed when using cement PO325, with the addition of bacterial spores (2.54–3.07 × 105/cm3 concrete) encapsulated by hydrogel containing no chitosan.
Impact of phenolic resin preparation on its properties and its penetration behavior in Kraft paper
(2018)
The core of decorative laminates is generally made of stacked Kraft paper sheets impregnated with a phenolic resin. As the impregnation process in industry is relatively fast, new methods need to be developed to characterize it for different paper-resin systems. Several phenolic resins were synthesized with the same Phenol:Formaldehyde ratio of 1:1.8 and characterized by Fourier Transform Infrared Spectrometry (FTIR) as well as Size-Exclusion Chromatography (SEC). In addition, their viscosities and surface tensions when diluted in methanol to 45% of solid content were measured. The capacity of each resin to penetrate a Kraft paper sheet was characterized using a new method, which measures the conductivities induced by the liquid resin crossing the paper substrate. With this method, crossing times could be measured with a good accuracy. Surprisingly, the results showed that the penetration time of the resin samples is not correlated to the viscosity values, but rather to the surface tension characteristics and the chemical characteristics of paper. Furthermore, some resins had a higher swelling effect on the fibers that delayed the crossing of the liquid through the paper.
Papermaking waste liquid (black liquor) is a serious source of water pollution worldwide. The subsequent treatment of it is very difficult cause it contains a large amount of lignin, inorganic salts, organic matter, and pigments, which lead to serious water pollution. Lignin is the main by-product of the paper industry and is the only natural aromatic recyclable resource. Its effective utilization rate is currently less than 3%. Therefore, how to effectively recycle lignin in papermaking waste liquid and further synthesize industrialized products is of great significance to the sustainable development and environmental protection. Besides, based on the shortage of petroleum resources in recent years, the application of biomass resources instead of petroleum resources in the industry is also an important issue. In this article, we explored the best optimal conditions for the oxypropylation and esterification of lignin, and prepared bio-bitumen based on modified lignin, and then applied it to the waterproof coating sheets. FTIR and mechanical properties (softening point, low-temperature flexibility, peel strength, etc.) were tested on the obtained waterproof coating sheets. The results show that the addition of modified lignin reduced the softening point and peel strength of the coating sheets. Interestingly, both oxypropylated lignin (OL) and esterified lignin (OEL) were very beneficial to resist the decrease in peel strength during the aging process, showing a significant improvement in the performance of the coating sheets after aging compared to the control.
In spite of many studies, knowledge about the fundamental factors influencing adhesion between addition curing silicones and aluminum substrates is very limited. The aim of this publication is to evaluate the influence of the formulation and the surface state of the adherend on bond strength. For this purpose, the composition of an addition curing silicone was systematically varied and the effects on both material and bond properties were examined. Additionally, the influence of surface aging at different humidities (0% r. h., 34% r. h., 82% r. h.) of acid etch pretreated aluminum substrates was considered. It is shown that the mechanical properties of the silicone material can be easily adjusted over a wide range by changing the formulation. Although high tensile strengths up to 9.2 MPa for the silicone material can be achieved, lap-shear strengths remain moderate at approximately 3.5 MPa. Predominant adhesive failures show the limited adhesive strength of the basic formulation without additives. Basic ingredients of addition curing silicones without additives are able to reach a certain adhesive strength. However, this strength was quite limited and adhesion promoters are required to further improve adhesion. The humidity at which the pretreated substrates are stored has an overall minor influence on bond strength. Surprisingly, bond strength tends to increase with the storage time of aluminum substrates despite lower surface energies in comparison to freshly pretreated substrates. All in all, the storage conditions of aluminum had a rather small influence on adhesion, whereas the composition of the silicone adhesive strongly influences bond strength.
Soft thermoplastic polysiloxane-urea-elastomers (PSUs) were prepared for the application as a biomaterial to replace the human natural lens after cataract surgery. PSUs were synthesized from amino-terminated polydimethylsiloxanes (PDMS), 4,4′-Methylenebis(cyclohexylisocyanate) (H12MDI) and 1,3–Bis(3-aminopropyl)-1,1,3,3–tetramethyldisiloxane (APTMDS) by a two-step polyaddition route. Such a material has to be highly transparent and must exhibit a low Young’s Modulus and excellent dimensional stability. Polydimethylsiloxanes in the range of 3000–33,000 g·mol−1 were therefore prepared by ring-chain-equilibration of octamethylcyclotetrasiloxane (D4) and APTMDS in order to study the influence of the soft segment molecular weight on the mechanical properties and the transparency of the PSU-elastomers. 2,4,6,8-Tetramethyl-2,4,6,8-tetraphenylcyclotetrasiloxane (D4Me,Ph) was co-polymerized with D4 in order to adjust the refractive index of the polydimethyl-methyl-phenyl-siloxane-copolymers to a value equivalent to a young human natural lens. Very elastic PSUs with Elongation at Break values higher than 700% were prepared. PSU-elastomers, synthesized from PDMS of molecular weights up to 18,000 g·mol−1, showed transmittance values of over 90% within the visible spectrum range. The soft segment refractive index was increased through the incorporation of 14 mol % of methyl-phenyl-siloxane from 1.4011 to 1.4346 (37 °C). Young’s Moduli of PSU-elastomers were around 1 MPa and lower at PDMS molecular weights up to 15,000 g·mol−1. 10-cycle hysteresis measurements were applied to evaluate the mechanical stability of the PSUs at repeated stress. Hysteresis values at 100% strain decreased from 32 to 2% (10th cycle) with increasing PDMS molecular weight. Furthermore, hysteresis at 5% strain was only detected in PSU-elastomers with low PDMS molecular weights. Finally, preliminary results of in vitro cytotoxicity tests on a PSU-elastomer showed no toxic effects on HaCaT-cells.
Powder coating of engineered wood panels such as medium density fibreboards (MDF) is gaining industrial interest due to ecological and economic advantages of powder coating technology. For transferring powder coating technology to temperature-sensitive substrates like MDF, a thorough understanding of the melting, flowing and curing behaviour of the used low-bake resins is required. In the present study, thermo-analysis in combination with iso-conversional kinetic data analysis as well as rheometry is applied to characterise the properties of an epoxy-based powder coating. Neat resin and cured powder coating films are examined in order to define an ideal production window within which the resin is preferably applied and processed to yield satisfactory surface performance on the one hand and without exposing the carrier MDF too high a temperature load on the other hand to prevent the panel from deteriorating in mechanical strength. In order to produce powder coated films of high surface gloss – a feature that has not yet successfully been realized on MDF with powder coatings – a new curing technology, in-mould surface finishing, has been applied.
The interaction between lipid bilayers in water has been intensively studied over the last decades. Osmotic stress was applied to evaluate the forces between two approaching lipid bilayers in aqueous solution. The force–distance relation between lipid mono- or bilayers deposited on mica sheets using a surface force apparatus (SFA) was also measured. Lipid stabilised foam films offer another possibility to study the interactions between lipid monolayers. These films can be prepared comparatively easy with very good reproducibility. Foam films consist usually of two adsorbed surfactant monolayers separated by a layer of the aqueous solution from which the film is created. Their thickness can be conveniently measured using microinterferometric techniques. Studies with foam films deliver valuable information on the interactions between lipid membranes and especially their stability and permeability. Presenting inverse black lipid membrane (BLM) foam films supply information about the properties of the lipid self-organisation in bilayers. The present paper summarises results on microscopic lipid stabilised foam films by measuring their thickness and contact angle. Most of the presented results concern foam films prepared from dispersions of the zwitterionic lipid 1,2-dimyristoyl-sn-glycero-3-phosphorylcholine (DMPC) and some of its mixtures with the anionic lipid — 1,2-dimyristoyl-sn-glycero-3-[phospho-rac-(1-glycerol)] (DMPG).
The strength of the long range and short range forces between the lipid layers is discussed. The van der Waals attractive force is calculated. The electrostatic repulsive force is estimated from experiments at different electrolyte concentrations (NaCl, CaCl2) or by modification of the electrostatic double layer surface potential by incorporating charged lipids in the lipid monolayers. The short range interactions are studied and modified by using small carbohydrates (fructose and sucrose), ethanol (EtOH) or dimethylsulfoxide (DMSO). Some results are compared with the structure of lipid monolayers deposited at the liquid/air interface (monolayers spread in Langmuir trough), which are one of most studied biomembrane model system. The comparison between the film thickness and the free energy of film formation is used to estimate the contribution of the different components of the disjoining pressure to the total interaction in the film and their dependence on the composition of the film forming solution.
The isothermal curing of melamine resin is investigated by in-line infrared spectroscopy at different temperatures. The infrared spectra are decomposed into time courses of characteristic spectral patterns using Multivariate Curve Resolution (MCR). It was found that depending on the applied curing temperature, melamine films with different spectral fingerprints and correspondingly different chemical network structures are formed. The network structures of fully cured resin films are specific for the applied curing temperatures used and cannot simply be compensated by changes in the curing time. For industrial curing processes, this means that cure temperature is the main system determining factor at constant M:F ratio. However, different MF resin networks can be specifically obtained from one and the same melamine resin by suitable selection of the curing time and temperatures profiles to design resin functionality. The spectral fingerprints after short curing time as well as after long curing time reflect the fundamental differences in the thermoset networks that can be obtained with industrial short-cycle and multi-daylight presses.
Thin radio-frequency magnetron sputter deposited nano-hydroxyapatite (HA) films were prepared on the surface of a Fe-tricalcium phosphate (Fe-TCP) bioceramic composite, which was obtained using a conventional powder injection moulding technique. The obtained nano-hydroxyapatite coated Fe-TCP biocomposites (nano HA-Fe-TCP) were studied with respect to their chemical and phase composition, surface morphology, water contact angle, surface free energy and hysteresis. The deposition process resulted in a homogeneous, single-phase HA coating. The ability of the surface to support adhesion and the proliferation of human mesenchymal stem cells (hMSCs) was studied using biological short-term tests in vitro. The surface of the uncoated Fe-TCP bioceramic composite showed an initial cell attachment after 24 h of seeding, but adhesion, proliferation and growth did not persist during 14 days of culture.However, the HA-Fe-TCP surfaces allowed cell adhesion, and proliferation during 14 days. The deposition of the nano-HA films on the Fe-TCP surface resulted in higher surface energy, improved hydrophilicity and biocompatibility compared with the surface of the uncoated Fe-TCP. Furthermore, it is suggested that an increase in the polar component of the surface energy was responsible for the enhanced cell adhesion and proliferation in the case of the nano-HA Fe-TCP biocomposites.
This paper is concerned with the study, optimization and control of the moisture sorption kinetics of agricultural products at temperatures typically found in processing and storage. A nonlinear autoregressive with exogenous inputs (NARX) neural network was developed to predict moisture sorption kinetics and consequently equilibrium moisture contents of shiitake mushrooms (Lentinula edodes (Berk.) Pegler) over a wide range of relative humidity and different temperatures. Sorption kinetic data of mushroom caps was separately generated using a continuous, gravimetric dynamic vapour sorption analyser at emperatures of 25-40 °C over a stepwise variation of relative humidity ranging from 0 to 85%. The predictive power of the neural network was based on physical data, namely relative humidity and temperature. The model was fed with a total of 4500 data points by dividing them into three subsets, namely, 70% of the data was used for training, 15% of the data for testing and 15% of the data for validation, randomly selected from the whole dataset. The NARX neural network was capable of precisely simulating equilibrium moisture contents of mushrooms derived from the dynamic vapour sorption kinetic data throughout the entire range of relative humidity.
The fiber deformations of once-dried, bleached and never-dried unbleached kraft pulps were studied with respect to their behavior in high- and low-consistency refining. The pulps were stained with congo red to experimentally highlight areas where the arrangement of the fibrils was altered by refining such as dislocated zones or slip planes. The stained fibers were analyzed with conventional Metso Fiberlab but also with a novel prototype measurement device utilizing a color imaging setup. The local intensity of the stain in the fiber was expressed as degree of overall damage (Overall fiber damage index, OFDI). The rewetted zero span tensile index (RWZSTI) was used to verify the OFDI with respect to the pulp strength. High consistency refining resulted in a clear increase in the number of kinks which negatively influenced the pulp strength. The OFDI which was used to detect the intensity of local fiber defects also responded accordingly. A higher OFDI resulted in a lower pulp strength. Low consistency refining removed a significant amount of kinks and resulted in an increase in fiber swelling. A slight increase in fibrillation and a significant increase in flake-like fines were also observed. The OFDI, however, was not reduced in low consistency refining as it would be expected by the removal of less severe dislocations. One reason proposed here is that low consistency refining created new fiber pores that allowed the dye to penetrate into the fiber wall similarly as it does in the zones of the dislocations.
A systematic study using a central composite design of experiments (DoE) was performed on the oxygen plasma surface modifications of two different polymers—Pellethane 2363-55DE, which is a polyurethane, and vinyltrimethoxysilane-grafted ethylene-propylene (EPR-g-VTMS), a cross-linked ethylene-propylene rubber. The impacts of four parameters—gas pressure, generator power, treatment duration, and process temperature—were assessed, with static contact angles and calculated surface free energies (SFEs) as the main responses in the DoE. The plasma effects on the surface roughness and chemistry were determined using scanning electron microscopy (SEM) and X-ray photoelectron spectroscopy (XPS). Through the sufficiently accurate DoE model evaluation, oxygen gas pressure was established as the most impactful factor, with the surface energy and polarity rising with falling oxygen pressure. Both polymers, though different in composition, exhibited similar modification trends in surface energy rise in the studied system. The SEM images showed a rougher surface topography after low pressure plasma treatments. XPS and subsequent multivariate data analysis of the spectra established that higher oxidized species were formed with plasma treatments at low oxygen pressures of 0.2 mbar.
The powder coating of veneered particle boards by the sequence electrostatic powder application –powder curing via hot pressing is studied in order to create high gloss surfaces. To obtain an appealingaspect, veneer Sheets were glued by heat and pressure on top of particle boards and the resulting surfaceswere used as carrier substrates for powder coat finishing. Prior to the powder coating, the veneeredparticle board surfaces were pre-treated by sanding to obtain good uniformity and the boards werestored in a climate chamber at controlled temperature and humidity conditions to adjust an appropriate electrical surface resistance. Characterization of surface texture was done by 3D microscopy. The surfaceelectrical resistance was measured for the six veneers before and after their application on the particleboard surface. A transparent powder top-coat was applied electrostatically onto the veneered particleboard surface. Curing of the powder was done using a heated press at 130◦C for 8 min and a smooth, glossy coating was obtained on the veneered surfaces. By applying different amounts of powder thecoating thickness could be varied and the optimum amount of powder was determined for each veneer type.
Clay minerals play an increasingly important role as functional fillers and reinforcing materials for clay polymer nanocomposites (CPN) in advanced applications. Among the prerequisites necessary for polymer improvement by clay minerals are homogeneous and stable Distribution of the clay mineral throughout the CPN, good compatibility of the reinforcement with the Matrix component and suitable processability. Typically, clay minerals are surface-modified with organic interface active compounds like detergents or silanes to obtain favorable properties as filler. They are incorporated into the polymer matrix using manufacturing Equipment like extruders, batch reactors or other mixing machines. In order for the surface modification to survive the stresses and strains during incorporation, the modified clay minerals must display sufficient thermal and mechanical stability to retain the compatibilizing effect. In the present study, thermogravimetry was used in combination with isoconversional kinetic analysis to determine the thermal stability of a silane-modified clay mineral based on bentonite. These findings were compared with the stability of the same clay mineral that was only surfactant-modified. It was found that silane modification leads to significantly improved thermal stability, which depends strongly on the type of silane employed.
Processing
(2014)
In this chapter, some relevant aspects and illustrative examples of online monitoring tools as the basis for process control in the manufacturing and processing of thermosetting resins are briefly discussed. In principle, any chemical or physical information made accessible by sensors can be used for online monitoring of resin formation, resin location in the mold, and resin cure. For instance, changes in the flow properties of the reaction mixture are often routinely recorded in dependence of the reaction time during resin synthesis as a measure for the degree of conversion of raw materials into macromolecules or oligomers by applying rheometry in an in-process environment. Typically, a small sample of the reaction mixture is by-passed, subjected to rheological measurement, and re-introduced into the bulk reactor. In a similar way, pH measurements, turbidimetric measurements, or other analyses are performed. Although rheometry may not always be suitable for following resin cure (especially in cases where there is a very rapid increase in viscosity after initiation of the cure), [1] naturally, the method can in principle also be used in the subsequent processing of the thermosets, for instance in the curing of wood glue applied to wood specimen [2]. Similarly, pH changes during thermoset curing can be followed. Hence, an encyclopedic and comprehensive approach to present process control methods would systematically proceed according to the involved physical measurement principle. However, since only a very Brief sketch of means for monitoring thermoset processing can be given here, only a small, personally biased selection of important methods and application examples is addressed in the following sections. These examples hopefully illustrate some of the general strategies and solutions to problems that are typically encountered when processing thermosets.
Process analysis and process control have attracted increasing interest in recent years. The development and application of process analytical methods are a prerequisite for the knowledge-based manufacturing of industrial goods and allow for the production of high-value products of defined, constantly good quality. Discussed in this chapter are the measurement principle and some relevant aspects and illustrative examples of online monitoring tools as the basis for process control in the manufacturing and processing of thermosetting resins. Optical spectroscopy is featured as one of the main process analytical methods applicable to, among other applications, online monitoring of resin synthesis. In combination with chemometric methods for multivariate data analysis, powerful process models can be generated within the framework of feedback and feed-forward control concepts. Other analytical methods covered in this chapter are those frequently used to control further processing of thermosets to the final parts, including dielectric analysis, ultrasonics, fiber optics, and Fiber Bragg Grating sensors.
Properties data of phenolic resins synthetized for the impregnation of saturating Kraft paper
(2018)
The quality of decorative laminates boards depends on the impregnation process of Kraft papers with a phenolic resin,which constitute the raw materials for the manufacture of the cores of such boards.In the laminates industries,the properties of resins are adapted via their syntheses,usually by mixing phenol and formaldehyde in a batch,where additives,temperature and stirring parameters can be controlled. Therefore, many possibilities of preparation and phenolic resins exist, that leads to different combinations of physico chemical properties. In this article, the properties data of eight phenolic resins synthetized with different parameters of pH and reaction times at 60 °C and 90 °C are presented: the losses of pH after synthesis and the dynamic viscosities measured after synthesis and one the solid content is adjusted to 45%w/w in methanol. Data aquired by Differential Scanning Calorimetry (DSC) of the resins and Inverse Gas Chromatography (IGC) of cured solids are given as well.
Employing diffuse reflection ultraviolet visible (UV–Vis) spectroscopy we developed an approach that is capable to quantitatively determine flux residues on a technical copper surface. The technical copper surface was soldered with a no-clean flux system of organic acids. By a post-solder cleaning step with different cleaning parameters, various levels of residues were produced. The surface was quantitatively and qualitatively characterized using X-ray photoelectron spectroscopy (XPS), Auger electron spectroscopy (AES), Fourier transform infrared spectroscopy (FTIR) and diffuse reflection UV–Vis spectroscopy. With the use of a multivariate analysis (MVA) we examined the UV–Vis data to create a correlation to the carbon content on the surface. The UV–Vis data could be discriminated for all groups by their level of organic residues. Combined with XPS the data were evaluated by a partial least squares (PLS) regression to establish a model. Based on this predictive model, the carbon content was calculated with an absolute error of 2.7 at.%. Due to the high correlation of predictive model, the easy-to-use measurement and the evaluation by multivariate analysis the developed method seems suitable for an online monitoring system. With this system, flux residues can be detected in a manufacturing cleaning process of technical surfaces after soldering.
Reflectometry is known since long as an interferometric method which can be used to characterize surfaces and thin films regarding their structure and,to a certain degree,composition as well.Properties like layer structures,layer thickness,density,and interface roughness can be determined by fitting the obtained reflectivity data with an appropriate model using a recursive fitting routine. However,one major drawback of the reflectometric method is its restriction to planar surfaces.In this article we demonstrate an approach to apply X-ray and neutron reflectometry to curved surfaces by means of the example of bent bare and coated glass slides.We prove the possibility to observe all features like Fresnel decay,Kiessig fringes,Bragg peaks and off-specular scattering and are able to interpret the data using common fitting software and to derive quantitative results about roughness,layer thickness and internal structure. The proposed method has become practical due to the availability of high quality 2D-detectors. It opens up the option to explore many kinds and shapes of samples,which,due to their geometry,have not been in the focus of reflectometry techniques until now.
Structural and functional thermosetting composite materials are exposed to different kinds of stress which can damage the polymer matrix, thus impairing the intended properties. Therefore, self-healing materials have attracted the attention of many research groups over the last decades in order to provide satisfactory material properties and outstanding product durability. The present article provides a critical overview of promising self-healing strategies for crosslinked thermoset polymers. It is organized in two parts: an overview about the different approaches to self-healing is given in the first part, whereas the second part focuses on the specific chemistries of the main strategies to achieve self-healing through crosslinking. It is attempted to provide a comprehensive discussion of different approaches which are described in the scientific literature. By comparison of the advantages and disadvantages, the authors wish to provide helpful insights on the assessment of the potential to transfer the extensive present knowledge about self-healing materials and methods to surface varnishing thermoset coatings.
Self-healing thermosets
(2022)
This chapter discusses the basic extrinsic, intrinsic, and combined extrinsic/intrinsic strategies for equipping thermosetting polymers with self-healing properties. The main focus will be on the presentation of a holistic optimization of thermosetting materials, that is, on a simultaneous optimization of both self-healing and other, specialized material properties. Due to their very rigid, highly cross-linked three-dimensional structure, thermosetting polymers require special chemical strategies to achieve self-healing properties. The main chemical strategies available for this will be briefly outlined. The examples given illustrate interesting and/or typical procedures and serve as an inspiration to find solutions for your own applications. They summarize important recent development in research and technology aiming toward multifunctional truly smart self-healing thermosetting materials. An important aspect in this topic area is also how precisely the self-healing effects are analytically checked, quantified, and evaluated. A range of measuring methods is available for this purpose. In this chapter, the most important analytical tools for testing self-healing properties are briefly introduced and highlighted with some illustrative examples.
Silicones
(2014)
Silicones are found in a variety of applications with requirements that range from long life at elevated temperatures to fluidity at low temperatures. This chapter first considers silicone elastomers and their application in room temperature vulcanizing (RTV) and heat curing systems (HTV). Also, new technologies for UV curing are introduced. Coverage of RTVs includes both one-component and two-component systems and the different cure chemistries of each, and is followed by a separate discussion of silicone laminates. Due to the high importance of silicone fluids, they are also discussed. Fluids include polishes, release agents, surfactants, and dielectric fluids.
Silicones
(2022)
Silicones are found in a variety of applications with requirements that range from long life at elevated temperatures to fluidity at low temperatures. This chapter first considers silicone elastomers and their application in room temperature vulcanizing (RTV) and heat curing systems (HTV). Also, new technologies for UV curing are introduced. Coverage of RTVs includes both one-component and two-component systems and the different cure chemistries of each and is followed by a separate discussion of silicone laminates. Due to the high importance of silicone fluids, they are also discussed. Fluids include polishes, release agents, surfactants, and dielectric fluids.
Today, virtualizing pharma R&D is increasingly related with data analytics and artificial intelligence (AI), technologies that have been developed by software companies outside the healthcare sector. The process of virtualizing pharma R&D is closely related to the technological advancements that result in the generation of large data sets ranging from genomics, proteomics, metabolomics, medical imaging, IoT wearables and large clinical trials, making it necessary for pharma companies to find new ways to store and ultimately analyze information. As a consequence, pharma companies are experimenting with AI in R&D ranging from in-silico drug design to clinical trail participants identification or dosage error reduction.
Perivascular stromal cells, including mesenchymal stem/stromal cells (MSCs), secrete paracrine factor in response to exercise training that can facilitate improvements in muscle remodeling. This study was designed to test the capacity for muscle-resident MSCs (mMSCs) isolated from young mice to release regenerative proteins in response to mechanical strain in vitro, and subsequently determine the extent to which strain-stimulated mMSCs can enhance skeletal muscle and cognitive performance in a mouse model of uncomplicated aging. Protein arrays confirmed a robust increase in protein release at 24 h following an acute bout of mechanical strain in vitro (10%, 1 Hz, 5 h) compared to non-strain controls. Aged (24 month old), C57BL/6 mice were provided bilateral intramuscular injection of saline, non strain control mMSCs, or mMSCs subjected to a single bout of mechanical strain in vitro (4 ×104). No significant changes were observed in muscle weight, myofiber size, maximal force, or satellite cell quantity at 1 or 4 wks between groups. Peripheral perfusion was significantly increased in muscle at 4 wks post-mMSC injection (p < 0.05), yet no difference was noted between control and preconditioned mMSCs. Intramuscular injection of preconditioned mMSCs increased the number of new neurons and astrocytes in the dentate gyrus of the hippocampus compared to both control groups (p < 0.05), with a trend toward an increase in water maze performance noted (p=0.07). Results from this study demonstrate that acute injection of exogenously stimulated muscle-resident stromal cells do not robustly impact aged muscle structure and function, yet increase the survival of new neurons in the hippocampus.