Refine
Document Type
- Conference Proceeding (552)
- Article (470)
- Part of a Book (145)
- Book (55)
- Doctoral Thesis (15)
- Anthology (11)
- Patent (6)
- Review (5)
- Working Paper (5)
- Journal (1)
Language
- English (1266) (remove)
Institute
- Informatik (418)
- ESB Business School (285)
- Technik (243)
- Angewandte Chemie (194)
- Textil und Design (124)
Today's pattern making methods for industrial purposes are including construction principles, which are based on mathematical formula and sizing charts. As a result, there are two-dimensional flats, which can be converted into a three-dimensional garment. Because of their high linearity, those patterns are incapable of recreating the complexity of the human body, which results in insufficient fit. Subsequent changes of the pattern require a high degree of experience and lead to an inefficient product development process. It is known that draping allows the development of more complex and demanding patterns, which corresponds more to the actual body shape. Therefore, this method is used in custom tailoring and haute couture to achieve perfect garment fit but is also associated with time.
So, there is the act of defiance to improve the fit of garments, to speed up production but maintain a good value for money. Reutlingen University is therefore working on the development of 3D-modelled body shapes for 3D draping, considering different layers of clothing, such as jackets or coats. For this purpose, 3D modelling is used to develop 3D-bodies that correspond to the finished dimensions of the garment. By flattening of the modelled body, it is then possible to obtain an optimal 2D Pattern of the body. The comparison of the conventional method and the developed method is done by 3D simulation.
Finally, the optical fit test is demonstrated by the simulated basic cuts, that a significantly better body wrapping through the newly developed methodology could be achieved. Unlike in the basic cuts, which were achieved by classical design principles have been created, only a few adjustments are necessary to obtain an optimized basic cut. Also, when considering the body distance, it is shown that the newly developed basic patterns provide a more even enclosure of the body.
The process for the production of customized bras is really challenging. Although the need is very clear, the lingerie industry is currently facing a lack of data, knowledge and expertise for the realization of an automated process chain. Different studies and surveys have shown, that the majority of women wear the incorrect bra size. In addition to aesthetic problems, health risks such as headaches, back problems or digestive problems of the wearers can result from this. An important prerequisite for improvements is the basic knowledge about the female breast, both in terms of body measurements and different breast shapes. The current size systematic for bras only defines a bra size by the relation between bust girth and underbust girth and standardized cup forms do not justice to the high variability of the human body. As the bra type shapes the female breast, basic knowledge about the relation of measurements and shapes from the clothed and the unclothed breast is missing.
In the present project, studies are conducted to explore the female breast and to derive new breast-specific body measurements, different breast shapes and deformation knowledge using existing bras.
Furthermore, an innovative process is being developed that leads from 3D scanning to individual and interactive pattern construction, which allows an automatic pattern creation based on individual body measurements and the influence of different material parameters.
In the course of the presentation, the current project status will be shown and the future developments and project steps will be introduced.
Purpose
Despite growing interest in the intersection of supply chain management (SCM) and management accounting (MA) in the academic debate, there is a lack of understanding regarding both the content and the delimitation of this topic. As of today, no common conceptualization of supply chain management accounting (SCMA) exists. The purpose of this study is to provide an overview of the research foci of SCMA in the scholarly debate of the past two decades. Additionally, it analyzes whether and to what extent the academic discourse of MA in SCs has already found its way into both SCM and MA higher education, respectively.
Design/methodology/approach
A content analysis is conducted including 114 higher education textbooks written in English or in German language.
Findings
The study finds that SC-specific concepts of MA are seldom covered in current textbooks of both disciplines. The authors conclude that although there is an extensive body of scholarly research about SCMA concepts, there is a significant discrepancy with what is taught in higher education textbooks.
Practical implications
There is a large discrepancy between the extensive knowledge available in scholarly research and what we teach in both disciplines. This implies that graduates of both disciplines lack important knowledge and skills in controlling and accounting for SCs. To bring about the necessary change, MA and SCM in higher education must be more integrative.
Originality/value
To the best of the authors knowledge, this study is first of its kind comprising a large textbook sample in both English and German languages. It is the first substantiated assessment of the current state of integration between SCM and MA in higher education.
In Germany, mobility is currently in a state of flux. Since June 2019, electric kick scooters (e-scooters) have been permitted on the roads, and this market is booming. This study employs a user survey to generate new data, supplemented by expert interviews to determine whether such e-scooters are a climate-friendly means of transport. The environmental impacts are quantified using a life cycle assessment. This results in a very accurate picture of e-scooters in Germany. The global warming potential of an e-scooter calculated in this study is 165 g CO2-eq./km, mostly due to material and production (that together account for 73% of the impact). By switching to e-scooters where the battery is swapped, the global warming potential can be reduced by 12%. The lowest value of 46 g CO2-eq./km is reached if all possibilities are exploited and the life span of e-scooters is increased to 15 months. Comparing these emissions with those of the replaced modal split, e-scooters are at best 8% above the modal split value of 39 g CO2-eq./km.
In this work, a brushless, harmonic-excited wound-rotor synchronous machine is investigated which utilizes special stator and rotor windings. The windings magnetically decouple the fundamental torque-producing field from the harmonic field required for the inductive power transfer to the field coil. In contrast to conventional harmonic-excited synchronous machines, the whole winding is utilized for both torque production and harmonic excitation such that no additional copper for auxiliary windings is needed. Different rotor topologies using rotating power electronic components are investigated and their efficiencies have been compared based on Finite-Element calculation and circuit analysis.
Energy efficient electric control of drives is more and more important for electric mobility and manufacturing industries. Online dynamic optimization of induction machines is challenging due to the computational complexity involved and the variable power losses during dynamic operation of induction machines. This paper proposes a simple technique for sub-optimal online loss optimization using rotor flux linkage templates for energy efficient dynamic operation of induction machines. Such a rotor flux linkage template is given by a rotor flux linkage trajectory which is optimal for a specific scenario. This template is calculated in an offline optimization process. For a specific scenario during real time operation the rotor flux linkage is calculated by appropriately scaling the given template.
Steady state efficiency optimization techniques for induction motors are state of the art and various methods have already been developed. This paper provides new insights in the efficiency optimized operation in dynamic regime. The paper proposes an anticipative flux modification in order to decrease losses during torque and speed transients. These trajectories are analyzed based on a numerical study for different motors. Measurement results for one motor are given as well.
The aim of this work was to investigate the mean fill weight control of a continuous capsule-filling process, whether it is possible to derive controller settings from an appendant process model. To that end, a system composed out of fully automated capsule filler and an online gravimetric scale was used to control the filled weight. This setup allows to examine challenges associated with continuous manufacturing processes, such as variations in the amount of active pharmaceutical ingredient (API) in the mixture due to fluctuations of the feeders or due to altered excipient batch qualities. Two types of controllers were investigated: a feedback control and a combination of feedback and feedforward control. Although both of those are common in the industry, determining the optimal parameter settings remains an issue. In this study, we developed a method to derive the control parameters based on process models in order to obtain optimal control for each filled product. Determined via rapid automated process development (RAPD), this method is an effective and fast way of determining control parameters. The method allowed us to optimize the weight control for three pharmaceutical excipients. By conducting experiments, we verified the feasibility of the proposed method and studied the dynamics of the controlled system. Our work provides important basic data on how capsule filler can be implemented into continuous manufacturing systems.