Refine
Document Type
- Article (3)
- Part of a Book (1)
Institute
- Angewandte Chemie (3)
- Textil und Design (1)
Der Markt für technische Textilien wird auch in Zukunft ein stetes Wachstum verzeichnen, schon jetzt hat der weltweite Faserverbrauch die Schwelle von 100 Mill. Tonnen jährlich überschritten. Bereits ohne den Einbezug von Verbundwerkstoffen und Vliesstoffen werden in etwa 30 Mill. Tonnen zu technischen Textilien verarbeitet.
The critical process parameters cell density and viability during mammalian cell cultivation are assessed by UV/VIS spectroscopy in combination with multivariate data analytical methods. This direct optical detection technique uses a commercial optical probe to acquire spectra in a label-free way without signal enhancement. For the cultivation, an inverse cultivation protocol is applied, which simulates the exponential growth phase by exponentially replacing cells and metabolites of a growing Chinese hamster ovary cell batch with fresh medium. For the simulation of the death phase, a batch of growing cells is progressively replaced by a batch with completely starved cells. Thus, the most important parts of an industrial batch cultivation are easily imitated. The cell viability was determined by the well-established method partial least squares regression (PLS). To further improve process knowledge, the viability has been determined from the spectra based on a multivariate curve resolution (MCR) model. With this approach, the progress of the cultivations can be continuously monitored solely based on an UV/VIS sensor. Thus, the monitoring of critical process parameters is possible inline within a mammalian cell cultivation process, especially the viable cell density. In addition, the beginning of cell death can be detected by this method which allows us to determine the cell viability with acceptable error. The combination of inline UV/VIS spectroscopy with multivariate curve resolution generates additional process knowledge complementary to PLS and is considered a suitable process analytical tool for monitoring industrial cultivation processes.
The detection and characterisation of oxide layers on metallic copper samples plays an important role for power electronic modules in the automotive industry. However, since precise identification of oxide layers by visual inspection is difficult and time consuming due to inhomogeneous colour distribution, a reliable and efficient method for estimating their thickness is needed. In this study, hyperspectral imaging in the visible wavelength range (425–725 nm) is proposed as an in-line inspection method for analysing oxide layers in real-time during processing of copper components such as printed circuit boards in the automotive industry. For implementation in the production line a partial least square regression (PLSR) model was developed with a calibration set of n = 12 with about 13,000 spectra per sample to determine the oxide layer thickness on top of the technical copper surfaces. The model shows a good prediction performance in the range of 0–30 nm compared to Auger electron spectroscopy depth profiles as a reference method. The root mean square error (RMSE) is 1.75 nm for calibration and 2.70 nm for full cross validation. Applied to an external dataset of four new samples with about 13,000 spectra per sample the model provides an RMSE of 1.84 nm for prediction and demonstrates the robustness of the model during real-time processing. The results of this study prove the ability and usefulness of the proposed method to estimate the thickness of oxide layers on technical copper. Hence, the application of hyperspectral imaging for the industrial process control of electronic devices is very promising.
The influence of turbidity on the Raman signal strengths of condensed matter is theoretically analyzed and measured with laboratory - scale equipment for remote sensing. The results show the quantitative dependence of back- and forward-scattered signals on the thickness and elastic-scattering properties of matter. In the extreme situation of thin, highly turbid layers, the measured Raman signal strengths exceed their transparent analogs by more than a factor of ten. The opposite behavior is found for thick layers of low turbidity, where the presence of a small amount of scatterers leads to a decrease of the measured signal. The wide range of turbidities appearing in nature is experimentally realized with stacked polymer layers and solid/liquid dispersions, and theoretically modeled by the equation of radiative transfer using the analytical diffusion approximation or random walk simulations.