Refine
Document Type
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- SPIE (3) (remove)
Radiofrequency ablation is an ablation technique to treat tumors with focused heat. Computer tomography, ultrasound and magnetic resonance imaging (MRI) are imaging modalities which can be used for image-guided procedures. MRI offers several advantages in comparison to the other imaging modalities, such as radiation-free fluoroscopic imaging, temperature mapping, a high-soft-tissue contrast and free selection of imaging planes. This work addresses the application of 3Dcontrollers for controlling interventional, fluoroscopic MR sequences at the scenario of MR guided radiofrequency ablation of hepatic malignancies. During this procedure, the interventionalist can monitor the targeting of the tumor with near-real time fluoroscopic sequences. In general, adjustments of the imaging planes are necessary during tumor targeting, which is performed by an assistant in the control room. Therefore, communication between the interventionalist in the scanner room and the assistant in the control room is essential. However, verbal communication is impaired due to the loud scanning noises. Alternatively, non-verbal communication between the two persons is possible, however limited to a few gestures and susceptible to misunderstandings. This work is analyzing different 3D-controllers to enable control of interventional MR sequences during MR-guided procedures directly by the interventionalist. Leap Motion, Wii Remote, SpaceNavigator, Phantom Omni and Foot Switch were selected. For that a simulation was built in C++ with VTK to feign the real scenario for test purposes. Previous results showed that Leap Motion is not suitable for the application while Wii Remote and Foot Switch are possible input devices. Final evaluation showed a generally time reduction with the use of 3D-controllers. Best results were reached with Wii Remote in 34 seconds. Handholding input devices like Wii Remote have further potential to integrate them in real environment to reduce intervention time.
Workflow driven support systems in the peri-operative area have the potential to optimize clinical processes and to allow new situation-adaptive support systems. We started to develop a workflow management system supporting all involved actors in the operating theatre with the goal to synchronize the tasks of the different stakeholders by giving relevant information to the right team members. Using the OMG standards BPMN, CMMN and DMN gives us the opportunity to bring established methods from other industries into the medical field. The system shows each addressed actor their information in the right place at the right time to make sure every member can execute their task in time to ensure a smooth workflow. The system has the overall view of all tasks. Accordingly, a workflow management system including the Camunda BPM workflow engine to run the models, and a middleware to connect different systems to the workflow engine and some graphical user interfaces to show necessary information or to interact with the system are used. The complete pipeline is implemented with a RESTful web service. The system is designed to include different systems like hospital information system (HIS) via the RESTful web service very easily and without loss of data. The first prototype is implemented and will be expanded.
An operating room is a stressful work environment. Nevertheless, all involved persons have to work safely as there is no space for mistakes. To ensure a high level of concentration and seamless interaction, all involved persons have to know their own tasks and the tasks of their colleagues. The entire team must work synchronously at all times. To optimize the overall workflow, a task manager supporting the team was developed. In parallel, a common conceptual design of a business process visualization was developed, which makes all relevant information accessible in real-time during a surgery. In this context an overview of all processes in the operating room was created and different concepts for the graphical representation of these user-dependent processes were developed. This paper describes the concept of the task manager as well as the general concept in the field of surgery.