Refine
Document Type
- Conference Proceeding (22)
- Article (11)
- Part of a Book (1)
Radiofrequency ablation is an ablation technique to treat tumors with focused heat. Computer tomography, ultrasound and magnetic resonance imaging (MRI) are imaging modalities which can be used for image-guided procedures. MRI offers several advantages in comparison to the other imaging modalities, such as radiation-free fluoroscopic imaging, temperature mapping, a high-soft-tissue contrast and free selection of imaging planes. This work addresses the application of 3Dcontrollers for controlling interventional, fluoroscopic MR sequences at the scenario of MR guided radiofrequency ablation of hepatic malignancies. During this procedure, the interventionalist can monitor the targeting of the tumor with near-real time fluoroscopic sequences. In general, adjustments of the imaging planes are necessary during tumor targeting, which is performed by an assistant in the control room. Therefore, communication between the interventionalist in the scanner room and the assistant in the control room is essential. However, verbal communication is impaired due to the loud scanning noises. Alternatively, non-verbal communication between the two persons is possible, however limited to a few gestures and susceptible to misunderstandings. This work is analyzing different 3D-controllers to enable control of interventional MR sequences during MR-guided procedures directly by the interventionalist. Leap Motion, Wii Remote, SpaceNavigator, Phantom Omni and Foot Switch were selected. For that a simulation was built in C++ with VTK to feign the real scenario for test purposes. Previous results showed that Leap Motion is not suitable for the application while Wii Remote and Foot Switch are possible input devices. Final evaluation showed a generally time reduction with the use of 3D-controllers. Best results were reached with Wii Remote in 34 seconds. Handholding input devices like Wii Remote have further potential to integrate them in real environment to reduce intervention time.
Intraoperative brain deformation, so called brain shift, affects the applicability of preoperative magnetic resonance imaging (MRI) data to assist the procedures of intraoperative ultrasound (iUS) guidance during neurosurgery. This paper proposes a deep learning-based approach for fast and accurate deformable registration of preoperative MRI to iUS images to correct brain shift. Based on the architecture of 3D convolutional neural networks, the proposed deep MRI-iUS registration method has been successfully tested and evaluated on the retrospective evaluation of cerebral tumors (RESECT) dataset. This study showed that our proposed method outperforms other registration methods in previous studies with an average mean squared error (MSE) of 85. Moreover, this method can register three 3D MRI-US pair in less than a second, improving the expected outcomes of brain surgery.
Purpose: Gliomas are the most common and aggressive type of brain tumors due to their infiltrative nature and rapid progression. The process of distinguishing tumor boundaries from healthy cells is still a challenging task in the clinical routine. Fluid attenuated inversion recovery (FLAIR) MRI modality can provide the physician with information about tumor infiltration. Therefore, this paper proposes a new generic deep learning architecture, namely DeepSeg, for fully automated detection and segmentation of the brain lesion using FLAIR MRI data.
Methods: The developed DeepSeg is a modular decoupling framework. It consists of two connected core parts based on an encoding and decoding relationship. The encoder part is a convolutional neural network (CNN) responsible for spatial information extraction. The resulting semantic map is inserted into the decoder part to get the full-resolution probability map. Based on modified U-Net architecture, different CNN models such as residual neural network (ResNet), dense convolutional network (DenseNet), and NASNet have been utilized in this study.
Results: The proposed deep learning architectures have been successfully tested and evaluated on-line based on MRI datasets of brain tumor segmentation (BraTS 2019) challenge, including s336 cases as training data and 125 cases for validation data. The dice and Hausdorff distance scores of obtained segmentation results are about 0.81 to 0.84 and 9.8 to 19.7 correspondingly.
Conclusion: This study showed successful feasibility and comparative performance of applying different deep learning models in a new DeepSeg framework for automated brain tumor segmentation in FLAIR MR images. The proposed DeepSeg is open source and freely available at https://github.com/razeineldin/DeepSeg/.
The metric and qualitative analysis of models of the upper and lower dental arches is an important aspect of orthodontic treatment planning. Currently available eLearning systems for dental education only allow access to digital learning materials, and do not interactively support the learning progress. Moreover, to date no study compared the efficiency of learning methods based on physical or digital study models. For this pilot study, 18 dental students were separated into two groups to investigate whether the learning success in study model analysis with an interactive elearning system is higher based on digital models or on conventional plaster models. The results show that with the digital method less time is needed per model analysis. Moreover, the digital approach leads to higher total scores than that based on plaster models. We conclude that interactive eLearning using digital dental arch models is a promising tool for dental education.
Diese Arbeit liefert einen Konzeptentwurf, der die Integration verschiedener Systeme mit prozessrelevanten klinischen Diensten gewährleistet. Chirurgische Abläufe werden in Form von Prozessen modelliert. Die Wahl der Notation und die Art der Modellierung dieser Prozesse spielt in der heutigen Forschung in diesem Gebiet eine zentrale Rolle. Sind diese Prozesse modelliert, besteht die Möglichkeit, diese in einer Workflow-Engine automatisiert auszuführen. Im Rahmen der Entwicklung eines Workflow-Managment-Systems stellt sich die Frage, wie die Anbindung dieser Workflow-Engine mit anderen Systemen erfolgen soll. In der Arbeit werden Schnittstellen abstrakt in der Web Services Description Language (WSDL) definiert. Darum werden automatisiert Artefakte erzeugt. Auf der Grundlage dieser Artefakte erfolgt die Integration der Systeme. Die Workflow-Engine kommunizieren über SOAP-Nachrichten (Simple Object Access Protocol) mit den entsprechenden Systemen. Dieser Ansatz wurde mithilfe eines Prototyps validiert und umgesetzt.
Purpose: Medical processes can be modeled using different methods and notations.Currently used modeling systems like Business Process Model and Notation (BPMN) are not capable of describing the highly flexible and variable medical processes in sufficient detail.
Methods: We combined two modeling systems, Business Process Management (BPM) and Adaptive Case Management (ACM), to be able to model non-deterministic medical processes. We used the new Standards Case Management Model and Notation (CMMN) and Decision Management Notation (DMN).
Results: First, we explain how CMMN, DMN and BPMN could be used to model non-deterministic medical processes. We applied this methodology to model 79 cataract operations provided by University Hospital Leipzig, Germany, and four cataract operations provided by University Eye Hospital Tuebingen, Germany. Our model consists of 85 tasks and about 20 decisions in BPMN. We were able to expand the system with more complex situations that might appear during an intervention.
Conclusion: An effective modeling of the cataract intervention is possible using the combination of BPM and ACM. The combination gives the possibility to depict complex processes with complex decisions. This combination allows a significant advantage for modeling perioperative processes.
Informationstechnische Systeme, die den Arbeitsablauf im klinischen Bereich unterstützen, sind aktuell auf organisatorische Abläufe beschränkt. Diese Arbeit stellt einen ersten Ansatz vor, wie solch ein System in den perioperativen Bereich eingebracht werden kann. Hierzu wurde eine Workflow Engine mit einer perioperativen Prozess-Visualisierung verknüpft. Das System wurde nach Modell-View-Controller-Prinzip implementiert. Als „Controller“ kommt die Workflow Engine zum Einsatz; also „Modell“ ein Prozessmodell, mit den erforderlichen klinischen Daten. Der „View“ wurde durch eine abgekoppelte Anwendung realisiert, welche auf Web-Technologien basiert. Drei Visualisierungen, die Workflow Engine sowie die Anbindung beider über eine Datenbankschnittstelle, wurden erfolgreich umgesetzt. Bei den drei Visualisierungen wurden jeweils eine Ansicht für den OP-Koordinator, den Springer und eine Ansicht für die Übersicht einer OP erstellt.
Information systems, which support the workflow in the clinical area, are currently limited to organizational processes. This work shows a first approach of an information system supporting all actors in the perioperative area. The first prototype and proof of concept was a task manager, giving all actors information about their task and the task of all other actors during an intervention. Based on this initial task manager, we implemented an information system based on a workflow engine controlling all processes and all information necessary for the intervention. A second part was the development of a perioperative process visualization which was developed based on a user centered approach jointly with clinicians and OR members.
An operation room is a stressful work environment. Nevertheless, all involved persons have to work safely as there is no space for making mistakes. To ensure a high level of concentration and seamless interaction, all involved persons have to know their own tasks and tasks of their colleagues. The entire team must work synchronously at all times. However, the operation room (OR) is a noisy environment and the actors have to set their focus on their work. To optimize the overall workflow, a task manager supporting the team was developed. Each actor is equipped with a client terminal showing a summary of their own tasks. Moreover, a big screen displays all tasks of all actors. The architecture is a distributed system based on a communication framework that supports the interaction of all clients with the task manager. A prototype of the task manager and several clients have been developed and implemented. The system represents a proof-of-concept for further development. This paper describes the concept of the task manager.
Workflow driven support systems in the peri-operative area have the potential to optimize clinical processes and to allow new situation-adaptive support systems. We started to develop a workflow management system supporting all involved actors in the operating theatre with the goal to synchronize the tasks of the different stakeholders by giving relevant information to the right team members. Using the OMG standards BPMN, CMMN and DMN gives us the opportunity to bring established methods from other industries into the medical field. The system shows each addressed actor their information in the right place at the right time to make sure every member can execute their task in time to ensure a smooth workflow. The system has the overall view of all tasks. Accordingly, a workflow management system including the Camunda BPM workflow engine to run the models, and a middleware to connect different systems to the workflow engine and some graphical user interfaces to show necessary information or to interact with the system are used. The complete pipeline is implemented with a RESTful web service. The system is designed to include different systems like hospital information system (HIS) via the RESTful web service very easily and without loss of data. The first prototype is implemented and will be expanded.
Die minimal-invasive Chirurgie (MIC) entwickelt sich durch den Einsatz von medizinischen Robotern wie dem da Vinci System von Intuitive Surgical stetig weiter. Hierdurch kann eine bessere oder gleichwertige Operation bei deutlich geringerer körperlicher Belastung des Operateurs erreicht werden. Dabei entstehen jedoch neue Problemstellungen wie beispielsweise Kollision zwischen Roboterarmen und die benötigte Zeit zum Einrichten einer geeigneten Roboterkonfiguration. Daher ist eine effiziente Vorbereitung und Planung der Interventionen erforderlich. Diese Arbeit präsentiert einen Ansatz für eine verbesserte Planung mit Augmented Reality (AR) und einer Robotik Simulationssoftware (RS). die Robotik Simulation dient zur Berechnung einer Roboterkonfiguration unter Vorgabe der Port-Positionen. Augmented Reality wird verwendet, um die berechneten Pose in der realen Umgebung zu visualisieren und somit leichter in den Operationssaal zu übertragen.
This paper contributes to the automatic detection of perioperative workflow by developing a binary endoscope localization. Automated situation recognition in the context of an intelligent operating room requires the automatic conversion of low level cues into more abstract high level information. Imagery from a laparoscope delivers rich content that is easy to obtain but hard to process. We introduce a system which detects if the endoscope's distal tip is inside or outsiede the patient based on the endoscope video. This information can be used as one parameter in a situation recognition pipeline. Our localization performs in real-time at a video resolution of 1280x720 and 5-fold cross validation yields mean F1-scores of up to 0,94 on videos of 7 laparoscopies.
Stent graft visualization and planning tool for endovascular surgery using finite element analysis
(2014)
Purpose: A new approach to optimize stent graft selection for endovascular aortic repair is the use of finite element analysis. Once the finite element model is created and solved, a software module is needed to view the simulation results in the clinical work environment. A new tool for Interpretation of simulation results, named Medical Postprocessor, that enables comparison of different stent graft configurations and products was designed, implemented and tested. Methods Aortic endovascular stent graft ring forces and sealing states in the vessel landing zone of three different configurations were provided in a surgical planning software using the Medical Imaging Interaction Tool Kit (MITK) Software system. For data interpretation, software modules for 2D and 3D presentations were implemented. Ten surgeons evaluated the software features of the Medical Postprocessor. These surgeons performed usability tests and answered questionnaires based on their experience with the system.
Results: The Medical Postprocessor visualization system enabled vascular surgeons to determine the configuration with the highest overall fixation force in 16 ± 6 s, best proximal sealing in 56±24 s and highest proximal fixation force in 38 ± 12 s. The majority considered the multiformat data provided helpful and found the Medical Postprocessor to be an efficient decision support system for stent graft selection. The evaluation of the user interface results in an ISONORMconform user interface (113.5 points).
Conclusion: The Medical Postprocessor visualization Software tool for analyzing stent graft properties was evaluated by vascular surgeons. The results show that the software can assist the interpretation of simulation results to optimize stent graft configuration and sizing.
Checklists are a valuable tool to ensure process quality and quality of care. To ensure proper integration in clinical processes, it would be desirable to generate checklists directly from formal process descriptions. Those checklists could also be used for user interaction in context-aware surgical assist systems. We built a tool to automatically convert Business Process Model and Notation (BPMN) process models to checklists displayed as HTML websites. Gateways representing decisions are mapped to checklist items that trigger dynamic content loading based on the placed checkmark. The usability of the resulting system was positively evaluated regarding comprehensibility and end-user friendliness.
In this paper a method for the generation of gSPM with ontology-based generalization was presented. The resulting gSPM was modeled with BPMN/BPMNsix in an efficient way and could be executed with BPMN workflow engines. In the next step the implementation of resource concepts, anatomical structures, and transition probabilities for workflow execution will be realized.
The increasing heterogenecity of students at German Universities of Applied Sciences and the growing importance of digitization call for a rethinking of teaching and learning within higher education. In the next years, changing the learning ecosystem by developing and reflecting upon new teaching and learning techniques using methods of digitalization will be both - most relevant and very challenging. The following article introduces two different learning scenarios, which exemplify the implementation of new educational models that allow discontinuity of time and place, technology and process in teaching and learning. Within a blended learning apporach, the first learning scenario aims at adapting and individualizing the knowledge transfer in the course Foundations of Computer Science by providing knowledge individually and situation-specifically. The second learning scenario proposes a web-based tool to facilitate digital learning environments and thus digital learning communities and the possibility of computer-supported learning. The overall aim of both learning scenarios is to enhance learning for diverse groups by providing a different smart learning ecosystem in stepping away from a teacher-based to a student-centered approach. Both learning scenarios exemplarily represent the educational vision of Reutlingen University - its development into an interactive university.
Scheduled flexibility and individualization of knowledge transfer in foundations of computer science
(2017)
The opening of the German higher education system for new target groups involves a heterogeneous composition of students as never before and face up the universities to new challenges. Due to different educational biographies, the students don't show a homogeneous level of knowledge. Furthermore, their access to course content and their individual learning methods are very diverse. The existing lack of knowledge and the very unequal study speed have a significant influence on the learning behavior and learning motivation. During the first semesters, the dropout rate is appreciably higher. The reform project gives an overview of a didactic restructuring from a formerly conventional teaching and learning concept to a stronger combination of digital offers, combined with classical lectures in the basic modules of computer science. The teaching content is adjusted to the individual requirements and knowledge. Students with different previous knowledge get the possibility to increase their knowledge in different levels of abstraction. The aim of the reform project has to point out the possibilities, also the challenges of the digital process in higher education. At the same time the question has to be explored, how far does an accompanied and self-directed learning in own speed and in own individual depth of knowledge have a positive impact on the motivation and on the study success of a learner.
There are several intra-operative use cases which require the surgeon to interact with medical devices. We used the Leap Motion Controller as input device and implemented two use-cases: 2D-Interaction (e.g. advancing EPR data) and selection of a value (e.g. room illumination brightness). The gesture detection was successful and we mapped its output to several devices and systems.
In der Orthopädie werden Robotersysteme bereits seit mehreren Jahren erfolgreich unterstützend eingesetzt. Dieser Ansatz erfordert die vorgelagerte Erstellung eines digitalen Modells auf Basis von medizinischen Bilddatensätzen. Die Erstellung und Überprüfung der Modelle soll in einer browserbasierten Client- Server-Anwendung erfolgen. Hierfür ist die Darstellung von zweidimensionalen und dreidimensionalen Datensätzen erforderlich. Basis dieses Papers ist die Entwicklung eines Ansatzes zur interaktiven, browserbasierten dreidimensionalen Darstellung medizinischer Planungsdaten. Die Anwendung stellt ein Proof of Concept dar, ob die bestehenden Desktopanwendungen zur Darstellung von Planungsdaten ersetzt werden können. Mit Hilfe des Frameworks AMI.js wurde die Anwendung umgesetzt. Sie erfüllt alle definierten Anforderungen und kann somit die aktuellen Desktopanwendungen ersetzen.
In networked operating room environments, there is an emerging trend towards standardized non-proprietary communication protocols which allow to build new integration solutions and flexible human-machine interaction concepts. The most prominent endeavor is the IEEE 11073 SDC protocol. For some uses cases, it would be helpful if not just medical devices could be controlled based on SDC, but also building automation systems like light, shutters, air condition, etc. For those systems, the KNX protocol is widely used. We build an SDC-to-KNX gateway which allows to use the SDC protocol for sending commands to connected KNX devices. The first prototype system was successfully implemented at the demonstration operating room at Reutlingen University. This is a first step toward the integration of a broader variety of KNX devices.