Refine
Document Type
- Article (5) (remove)
Intermediate filament reorganization dynamically influences cancer cell alignment and migration
(2017)
The interactions between a cancer cell and its extracellular matrix (ECM) have been the focus of an increasing amount of investigation. The role of the intermediate filament keratin in cancer has also been coming into focus of late, but more research is needed to understand how this piece fits in the puzzle of cytoskeleton-mediated invasion and metastasis. In Panc-1 invasive pancreatic cancer cells, keratin phosphorylation in conjunction with actin inhibition was found to be sufficient to reduce cell area below either treatment alone. We then analyzed intersecting keratin and actin fibers in the cytoskeleton of cyclically stretched cells and found no directional correlation. The role of keratin organization in Panc-1 cellular morphological adaptation and directed migration was then analyzed by culturing cells on cyclically stretched polydimethylsiloxane (PDMS) substrates, nanoscale grates, and rigid pillars. In general, the reorganization of the keratin cytoskeleton allows the cell to become more ‘mobile’- exhibiting faster and more directed migration and orientation in response to external stimuli. By combining keratin network perturbation with a variety of physical ECM signals, we demonstrate the interconnected nature of the architecture inside the cell and the scaffolding outside of it, and highlight the key elements facilitating cancer cell-ECM interactions.
A wide variety of cell types exhibit substrate topography-based behavior, also known as contact guidance. However, the precise cellular mechanisms underlying this process are still unknown. In this study, we investigated contact guidance by studying the reaction of human endothelial cells (ECs) to well-defined microgroove topographies, both during and after initial cell spreading. As the cytoskeleton plays a major role in cellular adaptation to topographical features, two methods were used to perturb cytoskeletal structures. Inhibition of actomyosin contractility with the chemical inhibitor blebbistatatin demonstrated that initial contact guidance events are independent of traction force generation. However, cell alignment to the grooved substrate was altered at later time points, suggesting an initial ‘passive’ phase of contact guidance, followed by a contractility-dependent ‘active’ phase that relies on mechanosensitive feedback. The actin cytoskeleton was also perturbed in an indirect manner by culturing cells upside down, resulting in decreased levels of contact guidance and suggesting that a possible loss of contact between the actin cytoskeleton and the substrate could lead to cytoskeleton impairment. The process of contact guidance at the microscale was found to be primarily lamellipodia driven, as no bias in filopodia extension was observed on micron-scale grooves.
Tumorzellen on the move : mikrosystem-basierter Assay zur Untersuchung der Tumorzellen-Migration
(2016)
Die Invasion von Tumorzellen in umliegendes Gewebe und die Bildung von Metastasen transformieren einen lokal wachsenden Tumor in eine systemische und lebensbedrohliche Krankheit mit schlechter Prognose. Dabei spielt die aktive Migration der Tumorzellen eine entscheidende Rolle. Tumorzellen gelangen durch die aktive Zellbewegung in das Lymph- oder Blutsystem und breiten sich im Körper aus. Bei der Invasion in ein neues Organ migrieren die Zellen ebenfalls wieder in komplexer Weise durch das Gewebe und können schließlich dort Metastasen bilden. Auf Grund der enormen medizinischen Relevanz der Tumorzell-Invasion, wird die Bewegung von Tumorzellen seit Jahrzehnten unter Laborbedingungen umfassend untersucht und ist ein wichtiger Marker für die Aggressivität der Tumorzellen. Zur Bewegungsanalyse gibt es mehrere experimentelle und auch kommerziell erhältliche in-vitro Untersuchungsmethoden. Ziel des interdisziplinären Projektes „MigChip“ ist die Entwicklung, Herstellung und experimentelle Validierung eines Mikrofludik-Chips zur verbesserten, detailgenauen in-vitro Untersuchung der Tumorzellen-Migration.
Cancer cells invade confined microchannels via a self-directed mesenchymal-to-amoeboid transition
(2019)
Cancer cell invasion through physical barriers in the extracellular matrix (ECM) requires a complex synergy of traction force against the ECM, mechanosensitive feedback, and subsequent cytoskeletal rearrangement. PDMS microchannels were used to investigate the transition from mesenchymal to amoeboid invasion in cancer cells. Migration was faster in narrow 3 μm-wide channels than in wider 10 μm channels, even in the absence of cell-binding ECM proteins. Cells permeating narrow channels exhibited blebbing and had smooth leading edge profiles, suggesting an ECM-induced transition from mesenchymal invasion to amoeboid invasion. Live cell labeling revealed a mechanosensing period in which the cell attempts mesenchymal-based migration, reorganizes its cytoskeleton, and proceeds using an amoeboid phenotype. Rho/ROCK (amoeboid) and Rac (mesenchymal) pathway inhibition revealed that amoeboid invasion through confined environments relies on both pathways in a time- and ECM dependent manner. This demonstrates that cancer cells can dynamically modify their invasion programming to navigate physically confining matrix conditions.
Stronger than they look
(2019)