Refine
Document Type
- Conference proceeding (8)
- Journal article (2)
Language
- English (10)
Is part of the Bibliography
- yes (10)
Institute
- Informatik (10)
Automatic anode rod inspection in aluminum smelters using deep-learning techniques: a case study
(2020)
Automatic fault detection using machine learning has become an exciting and promising area of research. This because it accurate and timely way to manage and classify with minimal human effort. In the computer vision community, deep-learning methods have become the most suitable approaches for this task. Anodes are large carbon blocks that are used to conduct electricity during the aluminum reduction process. The most basic function of anode rod inspection is to prevent a situation where the anode rod will not fit into the stub-holes of a new anode. It would be the case for a rod containing either severe toe-in, missing stubs, or a retained thimble on one or more stubs. In this work, to improve the accuracy of shape defect inspection for an anode rod, we use the Fast Region-based Convolutional Network method (Fast R-CNN), model. To train the detection model, we collect an image dataset composed of multi-class of anode rod defects with annotated labels. Our model is trained using a small number of samples, an essential requirement in the industry where the number of available defective samples is limited. It can simultaneously detect multi-class of defects of the anode rod in nearly real-time.
Theory and practice of implementing a successful enterprise IoT strategy in the industry 4.0 era
(2021)
Since the arrival of the internet and affordable access to technologies, digital technologies have occupied a growing place in industries, propelling us towards a 4th industrial revolution: Industry 4.0. In today’s era of digital upheaval, enterprises are increasingly undergoing transformations that are leading to their digitalization. The traditional manufacturing industry is in the throes of a digital transformation that is accelerated by exponentially growing technologies (e.g., intelligent robots, Internet of Things, sensors, 3D printing). Around the world, enterprises are in a frantic race to implement solutions based on IoT to improve their productivity, innovation, and reduce costs and improve their markets on the international scene. Considering the immense transformative potential that IoTs and big data have to bring to the industrial sector, the adoption of IoT in all industrial systems is a challenge to remain competitive and thus transform the industry into a smart factory. This paper presents the description of the innovation and digitalization process, following the Industry 4.0 paradigm to implement a successful enterprise IoT strategy.
Power line communications (PLC) reuse the existing power-grid infrastructure for the transmission of data signals. As power line the communication technology does not require a dedicated network setup, it can be used to connect a multitude of sensors and Internet of Things (IoT) devices. Those IoT devices could be deployed in homes, streets, or industrial environments for sensing and to control related applications. The key challenge faced by future IoT-oriented narrowband PLC networks is to provide a high quality of service (QoS). In fact, the power line channel has been traditionally considered too hostile. Combined with the fact that spectrum is a scarce resource and interference from other users, this requirement calls for means to increase spectral efficiency radically and to improve link reliability. However, the research activities carried out in the last decade have shown that it is a suitable technology for a large number of applications. Motivated by the relevant impact of PLC on IoT, this paper proposed a cooperative spectrum allocation in IoT-oriented narrowband PLC networks using an iterative water-filling algorithm.
Automatic classification of rotating machinery defects using Machine Learning (ML) algorithms
(2020)
Electric machines and motors have been the subject of enormous development. New concepts in design and control allow expanding their applications in different fields. The vast amount of data have been collected almost in any domain of interest. They can be static; that is to say, they represent real-world processes at a fixed point of time. Vibration analysis and vibration monitoring, including how to detect and monitor anomalies in vibration data are widely used techniques for predictive maintenance in high-speed rotating machines. However, accurately identifying the presence of a bearing fault can be challenging in practice, especially when the failure is still at its incipient stage, and the signal-to-noise ratio of the monitored signal is small. The main objective of this work is to design a system that will analyze the vibration signals of a rotating machine, based on recorded data from sensors, in the time/frequency domain. As a consequence of such substantial interest, there has been a dramatic increase of interest in applying Machine Learning (ML) algorithms to this task. An ML system will be used to classify and detect abnormal behavior and recognize the different levels of machine operation modes. The proposed solution can be deployed as predictive maintenance for Industry 4.0.
Current advances in Artificial Intelligence (AI) combined with other digitalization efforts are changing the role of technology in service ecosystems. Human-centered intelligent systems and services are the target of many current digitalization efforts and part of a massive digital transformation based on digital technologies. Artificial intelligence, in particular, is having a powerful impact on new opportunities for shared value creation and the development of smart service ecosystems. Motivated by experiences and observations from digitalization projects, this paper presents new methodological experiences from academia and practice on a joint view of digital strategy and architecture of intelligent service ecosystems and explores the impact of digitalization based on real case study results. Digital enterprise architecture models serve as an integral representation of business, information, and technology perspectives of intelligent service-based enterprise systems to support management and development. This paper focuses on the novel aspect of closely aligned digital strategy and architecture models for intelligent service ecosystems and highlights the fundamental business mechanism of AI-based value creation, the corresponding digital architecture, and management models. We present key strategy-oriented architecture model perspectives for intelligent systems.
An autonomous vehicle is a robotic vehicle with decision and action capability capable of performing assigned tasks without or with minimal human intervention. Autonomous cars have been in development for many years. The Society of Automotive Engineers (SAE International) published in 2014 a classification in five levels of driving automation, with level 0 corresponding to completely manual driving, and level 5 to an ideal dream where the vehicle would be able to navigate entirely autonomously for all missions and in all environments. This work addressed the navigation of an autonomous vehicle in general. We focus on one of the most complex scenarios of the road network and crossing of road intersections. In this paper, the critical features of autonomous intelligent vehicles are reviewed. Furthermore, the associated problems are presented, and the most advanced solutions are derived. This article aims to allow a novice in this field to understand the different facets of localization and perception problems for autonomous vehicles.
The current advancement of Artificial Intelligence (AI) combined with other digitalization efforts significantly impacts service ecosystems. Artificial intelligence has a substantial impact on new opportunities for the co-creation of value and the development of intelligent service ecosystems. Motivated by experiences and observations from digitalization projects, this paper presents new methodological perspectives and experiences from academia and practice on architecting intelligent service ecosystems and explores the impact of artificial intelligence through real cases supporting an ongoing validation. Digital enterprise architecture models serve as an integral representation of business, information, and technological perspectives of intelligent service-based enterprise systems to support management and development. This paper focuses on architectural models for intelligent service ecosystems, showing the fundamental business mechanism of AI-based value co-creation, the corresponding digital architecture, and management models. The focus of this paper presents the key architectural model perspectives for the development of intelligent service ecosystems.
The digitization of factories will be a significant issue for the 2020s. New scenarios are emerging to increase the efficiency of production lines inside the factory, based on a new generation of robots’ collaborative functions. Manufacturers are moving towards data-driven ecosystems by leveraging product lifecycle data from connected goods. Energy-efficient communication schemes, as well as scalable data analytics, will support these various data collection scenarios. With augmented reality, new remote services are emerging that facilitate the efficient sharing of knowledge in the factory. Future communication solutions should generally ensure connectivity between the various production sites spread worldwide and new players in the value chain (e.g., suppliers, logistics) transparent, real-time, and secure. Industry 4.0 brings more intelligence and flexibility to production. Resulting in more lightweight equipment and, thus, offering better ergonomics. 5G will guarantee real-time transmissions with latencies of less than 1 ms. This will provide manufacturers with new possibilities to collect data and trigger actions automatically.
Rotating machinery occupies a predominant place in many industrial applications. However, rotating machines are often encountered with severe vibration problems. The measurement of these machines’ vibrations signal is of particular importance since it plays a crucial role in predictive maintenance. When the vibrations are too high, they often cause fatigue failure. They announce an unexpected stop or break and, consequently, a significant loss of productivity or an attack on the personnel’s safety. Therefore, fault identification at early stages will significantly enhance the machine’s health and significantly reduce maintenance costs. Although considerable efforts have been made to master the field of machine diagnostics, the usual signal processing methods still present several drawbacks. This paper examines the rotating machinery condition monitoring in the time and frequency domains. It also provides a framework for the diagnosis process based on machine learning by analyzing the vibratory signals.
Autonomous navigation is one of the main areas of research in mobile robots and intelligent connected vehicles. In this context, we are interested in presenting a general view on robotics, the progress of research, and advanced methods related to this field to improve autonomous robots’ localization. We seek to evaluate algorithms and techniques that give robots the ability to move safely and autonomously in a complex and dynamic environment. Under these constraints, we focused our work in the paper on a specific problem: to evaluate a simple, fast and light SLAM algorithm that can minimize localization errors. We presented and validated a FastSLAM 2.0 system combining scan matching and loop closure detection. To allow the robot to perceive the environment and detect objects, we have studied one of the best deep learning technique using convolutional neural networks (CNN). We validate our testing using the YOLOv3 algorithm.