Refine
Document Type
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- IEEE (1)
- RWTH Aachen (1)
- Università Politecnica delle Marche (1)
To assess the quality of a person’s sleep, it is essential to examine the sleep behaviour by identifying the several sleep stages, their durations and sleep cycles. The established and gold standard procedure for sleep stage scoring is overnight polysomnography (PSG) with the Rechtschaffen and Kales (R-K) method. Unfortunately, the conduct of PSG is time-consuming and unfamiliar for the subjects and might have an impact of the recorded data. To avoid the disadvantages with PSG, it is important to make further investigations in low-cost home diagnostic systems. For this intention it is necessary to find suitable bio vital parameters for classifying sleep stages without any physical impairments at the same time. Due to the promising results in several publications we want to analyse existing methods for sleep stage classification based on the parameters body movement,
heartbeat and respiration. Our aim was to find different behaviour patterns in the several sleep stages. Therefore, the average values of 15 whole-night PSG recordings -obtained from the ‘DREAMS
Subjects Database’- where analysed in the light of heartbeat, body movement and respiration with 10 different methods.
A sleep study is a test used to diagnose sleep disorders and is usually done in sleep laboratories. The golden standard for evaluation of sleep is overnight polysomnography (PSG). Unfortunately, in-lab sleep studies are expensive and complex procedures. Furthermore, with a minimum of 22 wire attachments to the patient for sleep recording, this medical procedure is invasive and unfamiliar for the subjects. To solve this problem, low-cost home diagnostic systems, based on noninvasive recording methods requires further researches.
For this intention it is important to find suitable bio vital parameters for classifying sleep phases WAKE, REM, light sleep and deep sleep without any physical impairment at the same time. We decided to analyse body movement (BM), respiration rate (RR) and heart rate variability (HRV) from existing sleep recordings to develop an algorithm which is able to classify the sleep phases automatically. The preliminary results of this project show that BM, RR and HRV are suitable to identify WAKE, REM and NREM stage.
To evaluate the quality of a person´s sleep it is essential to identify the sleep stages and their durations. Currently, the gold standard in terms of sleep analysis is overnight polysomnography (PSG), during which several techniques like EEG (eletroencephalogram), EOG (electrooculogram), EMG (electromyogram), ECG (electrocardiogram), SpO2 (blood oxygen saturation) and for example respiratory airflow and respiratory effort are recorded. These expensive and complex procedures, applied in sleep laboratories, are invasive and unfamiliar for the subjects and it is a reason why it might have an impact on the recorded data. These are the main reasons why low-cost home diagnostic systems are likely to be advantageous. Their aim is to reach a larger population by reducing the number of parameters recorded. Nowadays, many wearable devices promise to measure sleep quality using only the ECG and body-movement signals. This work presents an android application developed in order to proof the accuracy of an algorithm published in the sleep literature. The algorithm uses ECG and body movement recordings to estimate sleep stages. The pre-recorded signals fed into the algorithm have been taken from physionet1 online database. The obtained results have been compared with those of the standard method used in PSG. The mean agreement ratios between the sleep stages REM, Wake, NREM-1, NREM-2 and NREM-3 were 38.1%, 14%, 16%, 75% and 54.3%.