Refine
Document Type
- Journal article (6)
Language
- English (6)
Is part of the Bibliography
- yes (6)
Institute
- Life Sciences (6)
Publisher
- EDP Sciences (1)
- MDPI (1)
- Optical Society of America (1)
- RSC Publ. (1)
- Royal Society of Chemistry (1)
- The Royal Society of Chemistry (1)
Here we report a simple way to enhance the resolution of a confocal scanning microscope under cryogenic conditions. Using a microscope objective (MO) with high numerical aperture (NA = 1:25) and 1-propanol as an immersion fluid with low freezing temperature we were able to reach an imaging resolution at 160 K comparable to ambient conditions. The MO and the sample were both placed inside the inner chamber of the cryostat to reduce distortions induced by temperature gradients. The image quality of our commercially available MO was further enhanced by scanning the sample (sample scanning) in contrast to beam scanning. The ease of the whole procedure marks an essential step towards the development of cryo high-resolution microscopy and correlative light and electron cryo microscopy (cryoCLEM).
One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles
(2016)
A facile method is described to prepare micron partly hollow dumbbell silica particles in a single step. The obtained particles consist of a large dense part and a small hollow lobe. The spherical dense core as well as the hollow lobe are covered by mesoporous channels. In the case of a smaller lobe these channels are responsible for the permeability of the shell which was demonstrated by confocal imaging and spectroscopy.
Using a Fabry-Pérot-microresonator with controllable cavity lengths in the λ/2-regime, we show the controlled modification of the vibronic relaxation dynamics of a fluorescent dye molecule in the spectral and time domain. By altering the photonic mode density around the fluorophores we are able to shape the fluorescence spectrum and enhance specifically the probability of the radiative transitions from the electronic excited state to distinct vibronic excited states of the electronic ground state. Analysis and correlation of the spectral and time resolved measurements by a theoretical model and a global fitting procedure allows us to reveal quantitatively the spectrally distributed radiative and non-radiative relaxation dynamics of the respective dye molecule under ambient conditions at the ensemble level.
Turbidity sensing is very common in the control of drinking water. Furthermore, turbidity measurements are applied in the chemical (e.g., process monitoring), pharmaceutical (e.g., drug discovery), and food industries (e.g., the filtration of wine and beer). The most common measurement technique is nephelometric turbidimetry. A nephelometer is a device for measuring the amount of scattered light of suspended particles in a liquid by using a light source and a light detector orientated in 90°to each other. Commercially available nephelometers cost usually—depending on the measurable range, reliability, and precision —thousands of euros. In contrast, our new developed GRIN-lens-based nephelometer, called GRINephy, combines low costs with excellent reproducibility and precision, even at very low turbidity levels, which is achieved by its ability to rotate the sample. Thereby, many cuvette positions can be measured, which results in a more precise average value for the turbidity calculated by an algorithm, which also eliminates errors caused by scratches and contaminations on the cuvettes. With our compact and cheap Arduino-based sensor, we are able to measure in the range of 0.1–1000 NTU and confirm the ISO 7027-1:2016 for low turbidity values.
We report the temperature dependence of metal-enhanced fluorescence (MEF) of individual photosystem I (PSI) complexes from Thermosynechococcus elongatus (T. elongatus) coupled to gold nanoparticles (AuNPs). A strong temperature dependence of shape and intensity of the emission spectra is observed when PSI is coupled to AuNPs. For each temperature, the enhancement factor (EF) is calculated by comparing the intensity of individual AuNP-coupled PSI to the mean intensity of ‘uncoupled’ PSI. At cryogenic temperature (1.6 K) the average EF was 4.3-fold. Upon increasing the temperature to 250 K the EF increases to 84-fold. Single complexes show even higher EFs up to 441.0-fold. At increasing temperatures the different spectral pools of PSI from T. elongatus become distinguishable. These pools are affected differently by the plasmonic interactions and show different enhancements. The remarkable increase of the EFs is explained by a rate model including the temperature dependence of the fluorescence yield of PSI and the spectral overlap between absorption and emission spectra of AuNPs and PSI, respectively.