Refine
Document Type
- Conference Proceeding (88)
- Article (17)
- Part of a Book (9)
Is part of the Bibliography
- yes (114)
Institute
- Informatik (114)
Publisher
- Springer (46)
- IEEE (14)
- Gesellschaft für Informatik (11)
- RWTH Aachen (5)
- Elsevier (4)
- SCITEPRESS (4)
- University of Hawai'i at Manoa (4)
- ACM (3)
- RWTH (3)
- Association for Information Systems (2)
Big Data und Cloud Systeme werden zunehmend von mobilen, benutzerzentrierten und agil veränderbaren Informationssystemen im Kontext von digitalen sozialen Netzwerken genutzt. Metaphern aus der Biologie für lebendige und selbstheilende Systeme und Umgebungen liefern die Basis für intelligente adaptive Informationssysteme und für zugehörige serviceorientierte digitale Unternehmensarchitekturen. Wir berichten über unsere Forschungsarbeiten über Strukturen und Mechanismen adaptiver digitaler Unternehmensarchitekturen für die Entwicklung und Evolution von serviceorientierten Ökosystemen und deren Technologien wie Big Data, Services & Cloud Computing, Web Services und Semantikunterstützung. Für unsere aktuellen Forschungsarbeiten nutzen wir praxisrelevante SmartLife Szenarien für die Entwicklung, Wartung und Evolution zukunftsgerechter serviceorientierter Informationssysteme. Diese Systeme nutzen eine stark wachsende Zahl externer und interner Services und fokussieren auf die Besonderheiten der Weiterentwicklung der Informationssysteme für integrierte Big Data und Cloud Kontexte. Unser Forschungsansatz beschäftigt sich mit der systematischen und ganzheitlichen Modellbildung adaptiver digitaler Unternehmensarchitekturen - gemäß standardisierter Referenzmodelle und auf Standards aufsetzenden Referenzarchitekturen, die für besondere Einsatzszenarien auch bei kleineren Anwendungskontexten oder an neue Kontexte einfacher adaptiert werden können. Um Semantik-gestützte Analysen zur Entscheidungsunterstützung von System- und Unternehmensarchitekten zu ermöglichen, erweitern wir unser bisheriges Referenzmodell für ITUnternehmensarchitekturen ESARC – Enterprise Services Architecture Reference Cube – um agile Mechanismen der Adaption und Konsistenzbehandlung sowie die zugehörigen Metamodelle und Ontologien für Digitale Enterprise Architekturen um neue Aspekte wie Big Data und Cloud Kontexte.
Der lokale Bekleidungseinzelhandel steht unter immer stärkerem Konkurrenzdruck durch Versandunternehmen. Zusätzlich bestehen durch gewachsene Architekturen eine Reihe von Wachstumshemmnissen. Daher sollen hier eine Reihe von Ansätzen zur Gestaltung datenzentrierter Unternehmensarchitekturen für den Bekleidungseinzelhandel vorgestellt werden. Sie basieren auf dem Einsatz von RFID zur Gewinnung von Kundenprofilen in den Niederlassungen und dem Einsatz von Big-Data basierten Auswertungs- und Analysemechanismen. Mit den vorgestellten Konzepten ist es Unternehmen des Bekleidungseinzelhandels möglich, ähnlich wie Versandunternehmen, individuelle Ansprachen des Kunden und Angebote zu entwickeln
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology and enterprise systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates collaborative decision mechanisms for adaptive digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support.
Enterprise Architectures (EA) consist of a multitude of architecture elements, which relate in manifold ways to each other. As the change of a single element hence impacts various other elements, mechanisms for architecture analysis are important to stakeholders. The high number of relationships aggravates architecture analysis and makes it a complex yet important task. In practice EAs are often analyzed using visualizations. This article contributes to the field of visual analytics in enterprise architecture management (EAM) by reviewing how state-of-the-art software platforms in EAM support stakeholders with respect to providing and visualizing the “right” information for decision-making tasks. We investigate the collaborative decision-making process in an experiment with master students using professional EAM tools by developing a research study. We evaluate the students’ findings by comparing them with the experience of an enterprise architect.
Many future Services Oriented Architecture (SOA) systems may be pervasive SmartLife applications that provide real-time support for users in everyday tasks and situations. Development of such applications will be challenging, but in this position paper we argue that their ongoing maintenance may be even more so. Ontological modelling of the application may help to ease this burden, but maintainers need to understand a system at many levels, from a broad architectural perspective down to the internals of deployed components. Thus we will need consistent models that span the range of views, from business processes through system architecture to maintainable code. We provide an initial example of such a modelling approach and illustrate its application in a semantic browser to aid in software maintenance tasks.
Enterprise Architectures (EA) consists of many architecture elements, which stand in manifold relationships to each other. Therefore Architecture Analysis is important and very difficult for stakeholders. Due changing an architecture element has impacts on other elements different stakeholders are involved. In practice EAs are often analyzed using visualizations. This article aims at contributing to the field of visual analytics in EAM by analyzing how state of-the-art software platforms in EAM support stakeholders with respect to providing and visualizing the “right” information for decision-making tasks. We investigate the collaborative decision-making process in an experiment with master students using professional EAM tools by developing a research study and accomplishing them in a master’s level class with students.
Artificial Intelligence-based Assistants AIAs are spreading quickly both in homes and offices. They already have left their original habitats of "intelligent speakers" providing easy access to music collections. The initiated a multitude of new devices and are already populating devices such as TV sets. Characteristic for the intelligent digital assistants is the formation of platforms around their core functionality. Thus, AIS capabilities of the assistants are used to offer new services and create new interfaces for business processes. There are positive network effects between the assistants and the services as well as within the services. Therefore, many companies see the need to get involved in the field of digital assistants but lack a framework to align their initiatives with their corporate strategies. In order to lay the foundation for a comprehensive method, we are therefore investigating intelligent digital assistants. Based on this analysis, we are developing a framework of strategic opportunities and challenges.
Artificial Intelligence enables innovative applications, and applications based on Artificial Intelligence are increasingly important for all aspects of the Digital Economy. However, the question of how AI resources such as tools and data can be linked to provide an AI-capability and create business value is still open. Therefore, this paper identifies the value-creating mechanisms of connectionist artificial intelligence using a capability-oriented view and points out the connections to different kinds of business value. The analysis supports an agenda that identifies areas that need further research to understand the mechanism of value creation in connectionist artificial intelligence.
Scenario-based analysis is a comprehensive technique to evaluate software quality and can provide more detailed insights than e.g. maintainability metrics. Since such methods typically require significant manual effort, we designed a lightweight scenario-based evolvability evaluation method. To increase efficiency and to limit assumptions, the method exclusively targets service- and microservice-based systems. Additionally, we implemented web-based tool support for each step. Method and tool were also evaluated with a survey (N=40) that focused on change effort estimation techniques and hands-on interviews (N=7) that focused on usability. Based on the evaluation results, we improved method and tool support further. To increase reuse and transparency, the web-based application as well as all survey and interview artifacts are publicly available on GitHub. In its current state, the tool-supported method is ready for first industry case studies.