Refine
Document Type
- Conference proceeding (97)
- Journal article (20)
- Book chapter (11)
Is part of the Bibliography
- yes (128)
Institute
- Informatik (128)
Publisher
- Springer (58)
- IEEE (14)
- Gesellschaft für Informatik (11)
- RWTH Aachen (8)
- Association for Information Systems (4)
- Elsevier (4)
- SciTePress (4)
- University of Hawai'i at Manoa (4)
- University of Hawaii at Manoa (4)
- Association for Computing Machinery (3)
Enterprise Architectures (EA) consists of many architecture elements, which stand in manifold relationships to each other. Therefore Architecture Analysis is important and very difficult for stakeholders. Due changing an architecture element has impacts on other elements different stakeholders are involved. In practice EAs are often analyzed using visualizations. This article aims at contributing to the field of visual analytics in EAM by analyzing how state of-the-art software platforms in EAM support stakeholders with respect to providing and visualizing the “right” information for decision-making tasks. We investigate the collaborative decision-making process in an experiment with master students using professional EAM tools by developing a research study and accomplishing them in a master’s level class with students.
Many future Services Oriented Architecture (SOA) systems may be pervasive SmartLife applications that provide real-time support for users in everyday tasks and situations. Development of such applications will be challenging, but in this position paper we argue that their ongoing maintenance may be even more so. Ontological modelling of the application may help to ease this burden, but maintainers need to understand a system at many levels, from a broad architectural perspective down to the internals of deployed components. Thus we will need consistent models that span the range of views, from business processes through system architecture to maintainable code. We provide an initial example of such a modelling approach and illustrate its application in a semantic browser to aid in software maintenance tasks.
Neue Modelle für digitale Unternehmensarchitekturen mit Big Data, Services & Cloud Computing, mobilen Systemen, Internet of Things sowie Industrie 4.0 Ökosystemen machen eine enge Kooperation verschiedener Partner aus Wissenschaft, Anwendungsunternehmen, öffentlichen Organisationen, Softwarehersteller und IT- Dienstleister notwendig. Ziel dieser Zusammenarbeit ist die Zusammenführung neuer Konzepte und Möglichkeiten der Informationstechnologie zur bestmöglichen Unterstützung sich verändernder Unternehmensziele und -strategien. Software- und Unternehmensarchitekturen spielen hierbei eine zentrale Rolle. So werden Anforderungen bezüglich Flexibilität und Agilität in digitalen Unternehmen wesentlich durch serviceorientierte Ansätze unterstützt. Der Ordnungsgrad und die kosteneffiziente Gestaltung komplexer IT-Landschaften soll durch Digital Enterprise Architecture Management deutlich verbessert werden – passend zu neuen Möglichkeiten von Services & Cloud Computing, Big Data, sowie kollaborativen Geschäftsprozessen.
Enterprise architecture management (EAM) is a holistic approach to tackle the complex Business and IT architecture. The transformation of an organization’s EA towards a strategy-oriented system is a continuous task. Many stakeholders have to elaborate on various parts of the EA to reach the best decisions to shape the EA towards an optimized support of the organizations’ capabilities. Since the real world is too complex, analyzing techniques are needed to detect optimization potentials and to get all information needed about an issue. In practice visualizations are commonly used to analyze EAs. However these visualizations are mostly static and do not provide analyses. In this article we combine analyzing techniques from literature and interactive visualizations to support stakeholders in EA decision-making.
New or adapted digital business models have huge impacts on Enterprise Architectures (EA) and require them to become more agile, flexible, and adaptable. All these changes are happening frequently and are currently not well documented. An EA consists of a lot of elements with manifold relationships between them. Thus changing the business model may have multiple impacts on other architectural elements. The EA engineering process deals with the development, change and optimization of architectural elements and their dependencies. Thus an EA provides a holistic view for both business and IT from the perspective of many stakeholders, which are involved in EA decision-making processes. Different stakeholders have specific concerns and are collaborating today in often unclear decision-making processes. In our research we are investigating information from collaborative decision-making processes to support stakeholders in taking current decisions. In addition we provide all information necessary to understand how and why decisions were taken. We are collecting the decision-related information automatically to minimize manual time intensive work as much as possible. The core contribution of our research extends a decisional metamodel, which links basic decisions with architectural elements and extends them with an associated decisional case context. Our aim is to support a new integral method for multi perspective and collaborative decision-making processes. We illustrate this by a practice-relevant decision-making scenario for Enterprise Architecture Engineering.
In modern times markets are very dynamic. This situation requires agile enterprises to have the ability to react fast on market influences. Thereby an enterprise’ IT is especially affected, because new or changed business models have to be realized. However, enterprise architectures (EA) are complex structures consisting of many artifacts and relationships between them. Thus analyzing an EA becomes to a complex task for stakeholders. In addition, many stakeholders are involved in decision-making processes, because Enterprise Architecture Management (EAM) targets providing a holistic view of the enterprise. In this article we use concepts of Adaptive Case Management (ACM) to design a decision-making case consisting of a combination of different analysis techniques to support stakeholders in decision-making. We exemplify the case with a scenario of a fictive enterprise.
Many organizations identified the opportunities of big data analytics to support the business with problem-specific insights through the exploitation of generated data. Socio-technical solutions are developed in big data projects to reach competitive advantage. Although these projects are aligned to specific business needs, common architectural challenges are not addressed in a comprehensive manner. Enterprise architecture management is a holistic approach to tackle the complex business and IT architecture. The transformation of an organization's EA is influenced by big data projects and their data-driven approach on all layers. To enable strategy oriented development of the EA it is essential to synchronize these projects supported by EA management. In
this paper, we conduct a systematic review of big data literature to analyze which requirements for the EA management discipline are proposed. Thereby, a broad overview about existing research is presented to facilitate a more detailed exploration and to foster the evolution o the EA management discipline.
The fast moving process of digitization1 demands flexibility in order to adapt to rapidly changing business requirements and newly emerging business opportunities. New features have to be developed and deployed to the production environment a lot faster. To be able to cope with this increased velocity and pressure, a lot of software developing companies have switched to a Microservice Architecture (MSA) approach. Applications built this way consist of several fine-grained and heterogeneous services that are independently scalable and deployable. However, the technological and business architectural impacts of microservices based applications directly affect their integration into the digital enterprise architecture. As a consequence, traditional Enterprise Architecture Management (EAM) approaches are not able to handle the extreme distribution, diversity, and volatility of micro-granular systems and services. We are therefore researching mechanisms for dynamically integrating large amounts of microservices into an adaptable digital enterprise architecture.
Towards a practical maintainability quality model for service- and microservice-based systems
(2017)
Although current literature mentions a lot of different metrics related to the maintainability of service-based systems (SBSs), there is no comprehensive quality model (QM) with automatic evaluation and practical focus. To fill this gap, we propose a Maintainability Model for Services (MM4S), a layered maintainability QM consisting of service properties (SPs) related with automatically collectable Service Metrics (SMs). This research artifact created within an ongoing Design Science Research (DSR) project is the first version ready for detailed evaluation and critical feedback. The goal of MM4S is to serve as a simple and practical tool for basic maintainability estimation and control in the context of BSs and their specialization
microservice-based systems (μSBSs).
In a time of digital transformation, the ability to quickly and efficiently adapt software systems to changed business requirements becomes more important than ever. Measuring the maintainability of software is therefore crucial for the long-term management of such products. With service-based systems (SBSs) being a very important form of enterprise software, we present a holistic overview of such metrics specifically designed for this type of system, since traditional metrics – e.g. object oriented ones – are not fully applicable in this case. The selected metric candidates from the literature review were mapped to 4 dominant design properties: size, complexity, coupling, and cohesion. Microservice-based systems (μSBSs) emerge as an agile and fine grained variant of SBSs. While the majority of identified metrics are also applicable to this specialization (with some limitations), the large number of services in combination with technological heterogeneity and decentralization of control significantly impacts automatic metric collection in such a system. Our research therefore suggests that specialized tool support is required to guarantee the practical applicability of the presented metrics to μSBSs.