Refine
Document Type
- Conference proceeding (96)
- Journal article (20)
- Book chapter (12)
Is part of the Bibliography
- yes (128)
Institute
- Informatik (128)
Publisher
- Springer (58)
- IEEE (14)
- Gesellschaft für Informatik e.V (11)
- RWTH Aachen (8)
- Association for Information Systems (4)
- Elsevier (4)
- SciTePress (4)
- University of Hawai'i at Manoa (4)
- University of Hawaii at Manoa (4)
- Association for Computing Machinery (3)
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. The Internet of Things, enterprise social networks, adaptive case management, mobility systems, analytics for big data, and cloud services environments are emerging to support smart connected products and services and the digital transformation. Biological metaphors of living and adaptable ecosystems provide the logical foundation for self-optimizing and resilient run-time environments for intelligent business services and service-oriented enterprise architectures. Our aim is to support flexibility and agile transformations for both business domains and related information technology. The present research paper investigates mechanisms for decision analytics in the context of multi-perspective explorations of enterprise services and their digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support. The paper’s context focuses on digital transformations of business and IT and integrates fundamental mappings between adaptable digital enterprise architectures and service-oriented information systems. We are putting a spotlight on the example domain – Internet of Things.
The fast moving process of digitization1 demands flexibility in order to adapt to rapidly changing business requirements and newly emerging business opportunities. New features have to be developed and deployed to the production environment a lot faster. To be able to cope with this increased velocity and pressure, a lot of software developing companies have switched to a Microservice Architecture (MSA) approach. Applications built this way consist of several fine-grained and heterogeneous services that are independently scalable and deployable. However, the technological and business architectural impacts of microservices based applications directly affect their integration into the digital enterprise architecture. As a consequence, traditional Enterprise Architecture Management (EAM) approaches are not able to handle the extreme distribution, diversity, and volatility of micro-granular systems and services. We are therefore researching mechanisms for dynamically integrating large amounts of microservices into an adaptable digital enterprise architecture.
The digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change drive current and next information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like microservices and the Internet of Things, as part of a new composed digital architecture. To integrate micro-granular architecture models into living architectural model versions we are extending enterprise architecture reference models by state of art elements for agile architectural engineering to support digital products, services, and processes.
Steady growing research material in a variety of databases, repositories and clouds make academic content more than ever hard to discover. Finding adequate material for the own research however is essential for every researcher. Based on recent developments in the field of artificial intelligence and the identified digital capabilities of future universities a change in the basic work of academic research is predicted. This study defines the idea of how artificial intelligence could simplifiy academic research at a digital university. Today's studies in the field of AI spectacle the true potential and its commanding impact on academic research.
Enterprise Governance, Risk and Compliance (GRC) systems are key to managing risks threatening modern enterprises from many different angles. Key constituent to GRC systems is the definition of controls that are implemented on the different layers of an Enterprise Architecture (EA). As part of the compliance aspect of GRC, the effectiveness of these controls is assessed and reported to relevant management bodies within the enterprise. In this paper we present a metamodel which links controls to the affected elements of an EA and supplies a way of expressing associated assessment techniques and results. We complement the metamodel with an expository instantiation in a cockpit for control compliance applied in an international enterprise in the insurance industry.
Digital Enterprise Architecture allows multiple viewpoints on a company’s IT landscape. To gain valuable information out of huge amounts of operational data, it is indispensable to have both an understanding of the operations architecture and an engine capable of managing Big Data. The mechanism of understanding huge amounts of data is based on three main steps: collect, process and use. The main idea is focused on extracting valuable information out of Big Data to make better design decisions. The Elastic Stack is an open-source solution to comfortably and quickly handle Big Data scenarios.
To bring a pattern-based perspective to the SOA vs. microservices discussion, we qualitatively analyzed a total of 118 SOA patterns from 2 popular catalogs for their (partial) applicability to microservices. Patterns had to hold up to 5 derived microservices principles to be applicable. 74 patterns (63%) were categorized as fully applicable, 30 (25%) as partially applicable, and 14 (12%) as not applicable. Most frequently violated microservices characteristics werde Decentralization and Single System. The findings suggest that microservices and SOA share a large set of architectural principles and solutions in the general space of service-based systems while only having a small set of differences in specific areas.
While there are several theoretical comparisons of Object Orientation (OO) and Service Orientation (SO), little empirical research on the maintainability of the two paradigms exists. To provide support for a generalizable comparison, we conducted a study with four related parts. Two functionally equivalent systems (one OO and one SO version) were analyzed with coupling and cohesion metrics as well as via a controlled experiment, where participants had to extend the systems. We also conducted a survey with 32 software professionals and interviewed 8 industry experts on the topic. Results indicate that the SO version of our system possesses a higher degree of cohesion, a lower degree of coupling, and could be extended faster. Survey and interview results suggest that industry sees systems built with SO as more loosely coupled, modifiable, and reusable. OO systems, however, were described as less complex and easier to test.
In current times, a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Enterprises are presently transforming their strategy, culture, processes, and their information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Digitization fosters the development of IT environments with many rather small and distributed structures, like Internet of Things. This has a strong impact for architecting digital services and products. The change from a closed-world modeling perspective to more flexible open-world and living software and system architectures defines the moving context for adaptable and evolutionary software approaches, which are essential to enable the digital transformation. In this paper, we are putting a spotlight to service oriented software evolution to support the digital transformation with micro granular digital architectures for digital services and products.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This defines the strategical context for composing resilient enterprise architectures for micro-granular digital services and products. The change from a closed-world modeling perspective to more flexible open-world composition and evolution of system architectures defines the moving context for adaptable systems, which are essential to enable the digital transformation. Enterprises are presently transforming their strategy and culture together with their processes and information systems to become more digital. The digital transformation deeply disrupts existing enterprises and economies. Since years a lot of new business opportunities appeared using the potential of the Internet and related digital technologies, like Internet of Things, services computing, cloud computing, big data with analytics, mobile systems, collaboration networks, and cyber physical systems. Digitization fosters the development of IT systems with many rather small and distributed structures, like Internet of Things or mobile systems. In this paper, we are focusing on the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like Internet of Things and Microservices, as part of a new digital enterprise architecture. To integrate micro-granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitalization of services with related products, and their processes.