Refine
Document Type
- Conference proceeding (3)
- Journal article (1)
Language
- English (4)
Has full text
- yes (4)
Is part of the Bibliography
- yes (4)
Institute
- Technik (4)
Publisher
- IEEE (3)
- VDE Verlag (1)
Switched reluctance motors are particularly attractive due to their simple structure. The control of this machine type requires the instants, to switch the currents in the motor phases in an appropriate sequence. These switching instants are determined either based on a position sensor, or on signals generated by a sensorless method. A very simple sensorless method uses the switching frequency of the hysteresis controllers used for phase current control. This paper first presents an automatic commissioning method for this sensorless method and second a startup procedure, thus enhancing this approach towards an application in industry.
This article illustrates a method for sensorless control of a switched reluctance motor. The detection of the time instants for switching between the working phases is determined based on the evaluation of the switching frequency of the hysteresis current controllers for appropriately selected sensing phases. This enables a simple and cost efficient implementation. The method is compared with a pulse injection method in terms of efficiency and resolution.
This contribution presents a three-phase power stage for motor control with continuous output voltages using wide bandgap semiconductors and an asynchronous delta-sigma based switching signal generation. The focus of the paper is on an active damping approach for the LC output filter based on inductor current feedback.