Refine
Document Type
- Conference proceeding (9)
- Journal article (3)
Has full text
- yes (12)
Is part of the Bibliography
- yes (12)
Institute
- Informatik (12)
Publisher
- ACM (4)
- IEEE (4)
- Open Proceedings.org, Univ. of Konstanz (2)
- Association of Computing Machinery (1)
- Springer Nature (1)
nKV in action: accelerating KVstores on native computational storage with NearData processing
(2020)
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, has yet to see widespread use.
In this paper we demonstrate various NDP alternatives in nKV, which is a key/value store utilizing native computational storage and near-data processing. We showcase the execution of classical operations (GET, SCAN) and complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4x-2.7x better performance due to NDP. nKV runs on real hardware - the COSMOS+ platform.
Massive data transfers in modern key/value stores resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) designs represent a feasible solution, which although not new, have yet to see widespread use.
In this paper we introduce nKV, which is a key/value store utilizing native computational storage and near-data processing. On the one hand, nKV can directly control the data and computation placement on the underlying storage hardware. On the other hand, nKV propagates the data formats and layouts to the storage device where, software and hardware parsers and accessors are implemented. Both allow NDP operations to execute in host-intervention-free manner, directly on physical addresses and thus better utilize the underlying hardware. Our performance evaluation is based on executing traditional KV operations (GET, SCAN) and on complex graph-processing algorithms (Betweenness Centrality) in-situ, with 1.4×-2.7× better performance on real hardware – the COSMOS+ platform.
Massive data transfers in modern data intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become viable.
The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under NoFTL-KV and the COSMOS hardware platform.
Many modern DBMS architectures require transferring data from storage to process it afterwards. Given the continuously increasing amounts of data, data transfers quickly become a scalability limiting factor. Near-Data Processing and smart/computational storage emerge as promising trends allowing for decoupled in-situ operation execution, data transfer reduction and better bandwidth utilization. However, not every operation is suitable for an in-situ execution and a careful placement and optimization is needed.
In this paper we present an NDP-aware cost model. It has been implemented in MySQL and evaluated with nKV. We make several observations underscoring the need for optimization.
Near-Data Processing is a promising approach to overcome the limitations of slow I/O interfaces in the quest to analyze the ever-growing amount of data stored in database systems. Next to CPUs, FPGAs will play an important role for the realization of functional units operating close to data stored in non-volatile memories such as Flash.It is essential that the NDP-device understands formats and layouts of the persistent data, to perform operations in-situ. To this end, carefully optimized format parsers and layout accessors are needed. However, designing such FPGA-based Near-Data Processing accelerators requires significant effort and expertise. To make FPGA-based Near-Data Processing accessible to non-FPGA experts, we will present a framework for the automatic generation of FPGA-based accelerators capable of data filtering and transformation for key-value stores based on simple data-format specifications.The evaluation shows that our framework is able to generate accelerators that are almost identical in performance compared to the manually optimized designs of prior work, while requiring little to no FPGA-specific knowledge and additionally providing improved flexibility and more powerful functionality.
Massive data transfers in modern data-intensive systems resulting from low data-locality and data-to-code system design hurt their performance and scalability. Near-Data processing (NDP) and a shift to code-to-data designs may represent a viable solution as packaging combinations of storage and compute elements on the same device has become feasible. The shift towards NDP system architectures calls for revision of established principles. Abstractions such as data formats and layouts typically spread multiple layers in traditional DBMS, the way they are processed is encapsulated within these layers of abstraction. The NDP-style processing requires an explicit definition of cross-layer data formats and accessors to ensure in-situ executions optimally utilizing the properties of the underlying NDP storage and compute elements. In this paper, we make the case for such data format definitions and investigate the performance benefits under RocksDB and the COSMOS hardware platform.
Multi-versioning and MVCC are the foundations of many modern DBMSs. Under mixed workloads and large datasets, the creation of the transactional snapshot can become very expensive, as long-running analytical transactions may request old versions, residing on cold storage, for reasons of transactional consistency. Furthermore, analytical queries operate on cold data, stored on slow persistent storage. Due to the poor data locality, snapshot creation may cause massive data transfers and thus lower performance. Given the current trend towards computational storage and near-data processing, it has become viable to perform such operations in-storage to reduce data transfers and improve scalability. neoDBMS is a DBMS designed for near-data processing and computational storage. In this paper, we demonstrate how neoDBMS performs snapshot computation in-situ. We showcase different interactive scenarios, where neoDBMS outperforms PostgreSQL 12 by up to 5×.
Near-data processing in database systems on native computational storage under HTAP workloads
(2022)
Today’s Hybrid Transactional and Analytical Processing (HTAP) systems, tackle the ever-growing data in combination with a mixture of transactional and analytical workloads. While optimizing for aspects such as data freshness and performance isolation, they build on the traditional data-to-code principle and may trigger massive cold data transfers that impair the overall performance and scalability. Firstly, in this paper we show that Near-Data Processing (NDP) naturally fits in the HTAP design space. Secondly, we propose an NDP database architecture, allowing transactionally consistent in-situ executions of analytical operations in HTAP settings. We evaluate the proposed architecture in state-of-the-art key/value-stores and multi-versioned DBMS. In contrast to traditional setups, our approach yields robust, resource- and cost-effcient performance.
Current data-intensive systems suffer from scalability as they transfer massive amounts of data to the host DBMS to process it there. Novel near-data processing (NDP) DBMS architectures and smart storage can provably reduce the impact of raw data movement. However, transferring the result-set of an NDP operation may increase the data movement, and thus, the performance overhead. In this paper, we introduce a set of in-situ NDP result-set management techniques, such as spilling, materialization, and reuse. Our evaluation indicates a performance improvement of 1.13 × to 400 ×.
For a long time, most discrete accelerators have been attached to host systems using various generations of the PCI Express interface. However, with its lack of support for coherency between accelerator and host caches, fine-grained interactions require frequent cache-flushes, or even the use of inefficient uncached memory regions. The Cache Coherent Interconnect for Accelerators (CCIX) was the first multi-vendor standard for enabling cache-coherent host-accelerator attachments, and already is indicative of the capabilities of upcoming standards such as Compute Express Link (CXL). In our work, we compare and contrast the use of CCIX with PCIe when interfacing an ARM-based host with two generations of CCIX-enabled FPGAs. We provide both low-level throughput and latency measurements for accesses and address translation, as well as examine an application-level use-case of using CCIX for fine-grained synchronization in an FPGA-accelerated database system. We can show that especially smaller reads from the FPGA to the host can benefit from CCIX by having roughly 33% shorter latency than PCIe. Small writes to the host have a latency roughly 32% higher than PCIe, though, since they carry a higher coherency overhead. For the database use-case, the use of CCIX allowed to maintain a constant synchronization latency even with heavy host-FPGA parallelism.