Refine
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Life Sciences (2)
Publisher
- Elsevier (1)
- Tech Science Press (1)
Powder coating of engineered wood panels such as medium density fibreboards (MDF) is gaining industrial interest due to ecological and economic advantages of powder coating technology. For transferring powder coating technology to temperature-sensitive substrates like MDF, a thorough understanding of the melting, flowing and curing behaviour of the used low-bake resins is required. In the present study, thermo-analysis in combination with iso-conversional kinetic data analysis as well as rheometry is applied to characterise the properties of an epoxy-based powder coating. Neat resin and cured powder coating films are examined in order to define an ideal production window within which the resin is preferably applied and processed to yield satisfactory surface performance on the one hand and without exposing the carrier MDF too high a temperature load on the other hand to prevent the panel from deteriorating in mechanical strength. In order to produce powder coated films of high surface gloss – a feature that has not yet successfully been realized on MDF with powder coatings – a new curing technology, in-mould surface finishing, has been applied.
Here, we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres. The composite was prepared either completely binder-less or bonded with 10% (w/w) of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide. The flexural modulus of elasticity, the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated. The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry (DSC) in combination with the iso-conversional kinetic analysis method of Vyazovkin to derive the curing conditions required for achieving completely cured resin. For the binderless Typha panels the best technological properties were achieved for panels with high density. By adding 10% of the binder resin the flexural strength and especially the water absorption were improved significantly.