Refine
Document Type
- Conference proceeding (11)
- Journal article (4)
Is part of the Bibliography
- yes (15)
Institute
- Informatik (15)
Publisher
- Springer (9)
- Association for Information Systems (2)
- Emerald (1)
- Gesellschaft für Informatik (1)
- IEEE (1)
- IGI Global (1)
Purpose
In recognising the key role of business intelligence and big data analytics in influencing companies’ decision-making processes, this paper aims to codify the main phases through which companies can approach, develop and manage big data analytics.
Design/methodology/approach
By adopting a research strategy based on case studies, this paper depicts the main phases and challenges that companies “live” through in approaching big data analytics as a way to support their decision-making processes. The analysis of case studies has been chosen as the main research method because it offers the possibility for different data sources to describe a phenomenon and subsequently to develop and test theories.
Findings
This paper provides a possible depiction of the main phases and challenges through which the approach(es) to big data analytics can emerge and evolve over time with reference to companies’ decision-making processes.
Research limitations/implications
This paper recalls the attention of researchers in defining clear patterns through which technology-based approaches should be developed. In its depiction of the main phases of the development of big data analytics in companies’ decision-making processes, this paper highlights the possible domains in which to define and renovate approaches to value. The proposed conceptual model derives from the adoption of an inductive approach. Despite its validity, it is discussed and questioned through multiple case studies. In addition, its generalisability requires further discussion and analysis in the light of alternative interpretative perspectives.
Practical implications
The reflections herein offer practitioners interested in company management the possibility to develop performance measurement tools that can evaluate how each phase can contribute to companies’ value creation processes.
Originality/value
This paper contributes to the ongoing debate about the role of digital technologies in influencing managerial and social models. This paper provides a conceptual model that is able to support both researchers and practitioners in understanding through which phases big data analytics can be approached and managed to enhance value processes.
Der Einsatz von Daten mit unterschiedlicher Struktur zur Fehleranalyse in der Produktion ist eine große Herausforderung für Industrieunternehmen. Dieser Artikel zeigt einen prototypischen Lösungsweg auf, wie die Integration von unterschiedlich strukturierten Daten zur Fehleranalyse gelingen kann. Anhand eines Fallbeispiels wird ein Prototyp konzipiert und umgesetzt, der verschiedene Verfahren zur Analyse von Daten unterschiedlicher Struktur kombiniert und die spezifischen Anforderungen in der datengetriebenen Produktionsfehleranalyse adressieren kann. Das Ergebnis zeigt eine innovative Möglichkeit zur datengetriebenen Fehleranalyse für die Produktion, in der unterschiedlich strukturierte Daten eingesetzt und verschiedene Analyseverfahren miteinander nutzendstiftend verbunden sind. Die Evaluation durch Experten zeigt ferner, dass der vorgeschlagene prototypische Lösungsweg für den Einsatz in der Praxis geeignet ist und einen Mehrwert für Unternehmen stiften kann. Aufbauend auf diesen Erkenntnissen werden Implikationen benannt, Limitationen aufgezeigt und zukünftiger Forschungsbedarf abgeleitet.
Digital enterprise architecture management in tourism : state of the art and future directions
(2018)
The advance of information technology impacts tourism more than many other industries, due to the service character of its products. Most offerings in tourism are immaterial in nature and challenging in coordination. Therefore, the alignment of IT and strategy and digitization is of crucial importance to enterprises in tourism. To cope with the resulting challenges, methods for the management of enterprise architectures are necessary. Therefore, we scrutinize approaches for managing enterprise architectures based on a literature research. We found many areas for future research on the use of enterprise architecture in tourism.
An enormous amount of data in the context of business processes is stored as images. They contain valuable information for business process management. Up to now this data had to be integrated manually into the business process. By advances of capturing it is possible to extract information from an increasing number of images. Therefore, we systematically investigate the potentials of Image Mining for business process management by a literature research and an in-depth analysis of the business process lifecycle. As a first step to evaluate our research, we developed a prototype for recovering process model information from drawings using Rapidminer.
Revenue management information systems are very important in the hospitality sector. Revenue decisions can be better prepared based on different information from different information systems and decision strategies. There is a lack of research about the usage of such systems in small and medium-sized hotels and architectural configurations. Our paper empirically shows the current development of revenue information systems. Furthermore, we define future developments and requirements to improve such systems and the architectural base.
Platforms and their surrounding ecosystems are becoming increasingly important components of many companies' strategies. Artificial Intelligence, in particular, has created new opportunities to create and develop ecosystems around the platform. However, there is not yet a methodology to systematically develop these new opportunities for enterprise development strategy. Therefore, this paper aims to lay a foundation for the conceptualization of Artificial Intelligence-based service ecosystems exploiting a Service-Dominant Logic. The basis for conceptualization is the study of value creation and particularly effective network effects. This research investigates the fundamental idea of extending specific digital concepts considering the influence of Artificial Intelligence on the design of intelligent services, along with their architecture of digital platforms and ecosystems, to enable a smooth evolutionary path and adaptability for human-centric collaborative systems and services. The paper explores an extended digital enterprise conceptual model through a combined, iterative, and permanent task of co-creating value between humans and intelligent systems as part of a new idea of cognitively adapted intelligent services.
Data analysis is becoming increasingly important to pursue organizational goals, especially in the context of Industry 4.0, where a wide variety of data is available. Here numerous challenges arise, especially when using unstructured data. However, this subject has not been focused by research so far. This research paper addresses this gap, which is interesting for science and practice as well. In a study three major challenges of using unstructured data has been identified: analytical know-how, data issues, variety. Additionally, measures how to improve the analysis of unstructured data in the industry 4.0 context are described. Therefore, the paper provides empirical insights about challenges and potential measures when analyzing unstructured data. The findings are presented in a framework, too. Hence, next steps of the research project and future research points become apparent.
Digitization is more than using digital technologies to transfer data and perform computations and tasks. Digitization embraces disruptive effects of digital technologies on economy and society. To capture these effects, two perspectives are introduced, the product and the value-creation perspective. In the product perspective, digitization enables the transition from material, static products to interactive and configurable services. In the value-creation perspective, digitization facilitates the transition from centralized, isolated models of value creation, to bidirectional, co-creation oriented approaches of value creation.
Digitalization and enterprise architecture management: a perspective on benefits and challenges
(2023)
Many companies digitally transform their business models, processes, and services. They have also been using Enterprise Architecture Management approaches for a long time to synchronize corporate strategy and information technology. Such digitalization projects bring different challenges for Enterprise Architecture Management. Without understanding and addressing them, Enterprise Architecture Management projects will fail or not deliver the expected value. Since existing research has not yet addressed these challenges, they were investigated based on a qualitative expert study with leading industry experts from Europe. Furthermore, potential benefits of digitalization projects for Enterprise Architecture Management were researched. Our results provide a theoretical framework consisting of five identified challenges, triggers and a number of benefits. Furthermore, we discuss in what ways digitalization and EAM is a promising topic for future research.
Artificial Intelligence enables innovative applications, and applications based on Artificial Intelligence are increasingly important for all aspects of the Digital Economy. However, the question of how AI resources such as tools and data can be linked to provide an AI-capability and create business value is still open. Therefore, this paper identifies the value-creating mechanisms of connectionist artificial intelligence using a capability-oriented view and points out the connections to different kinds of business value. The analysis supports an agenda that identifies areas that need further research to understand the mechanism of value creation in connectionist artificial intelligence.