Refine
Document Type
- Conference proceeding (41)
- Patent / Standard / Guidelines (11)
- Journal article (9)
- Book chapter (1)
Is part of the Bibliography
- yes (62)
Institute
- Technik (62)
Publisher
Pegelumsetzer mit einem ersten Eingang, der ein erstes Signal erfasst, wobei das erste Signal einen ersten Spannungspegel aufweist, einem Ausgang, der ein zweites Signal erzeugt, wobei das zweite Signal einen zweiten Spannungspegel aufweist, wobei der zweite Spannungspegel größer als der erste Spannungspegel ist und einem Differenzverstärker, der eine Differenzspannung erfasst, wobei der Differenzverstärker mit einer Versorgungsspannung und einer hochseitige Masse verbunden ist, wobei die Versorgungsspannung ein erstes Spannungspotential und die hochseitige Masse ein zweites Spannungspotential aufweist, dadurch gekennzeichnet, dass der erste Eingang mit einer ersten Teilschaltung verbunden ist, wobei die erste Teilschaltung mit einer zweiten Teilschaltung unidirektional verbunden ist, wobei die zweite Teilschaltung mit der Versorgungsspannung und der hochseitigen Masse verbunden ist, wobei die zweite Teilschaltung mindestens zwei Ausgänge aufweist, die die Differenzspannung des Differenzverstärkers erzeugen, wobei über einen Versorgungsspannungseingang und einen hochseitigen Masseeingang eine zusätzliche Spannung einkoppelt und der Differenzverstärker das zweite Signal in Abhängigkeit der Differenzspannung, der Versorgungsspannung, der hochseitigen Masse und der zusätzlichen Spannung erzeugt.
Disclosed is an electronic drive circuit and a drive method. The drive circuit includes an output; a first output transistor comprising a control node and a load path, wherein the load path is coupled between the output and a first supply node; a voltage regulator configured to control a voltage across the load path of the first output transistor; and a first driver configured to drive the first output transistor based on a first control signal.
Die Erfindung betrifft eine Vorrichtung (100) und ein Verfahren zum elektrischen Verbinden und Trennen zweier elektrischer Potentiale (1, 2). Des Weiteren betrifft die Erfindung eine Verwendung der Vorrichtung (100). Dabei umfasst die Vorrichtung (100): – ein erstes Modul, welches einen ersten und einen zweiten Transistor (10a, 10b) umfasst, wobei der erste Transistor (10a) antiseriell zu dem zweiten Transistor (10b) geschaltet ist; und – ein zweites Modul, welches einen dritten und einen vierten Transistor (10c, 10d) umfasst, wobei der dritte Transistor (10c) antiseriell zu dem vierten Transistor (10d) geschaltet ist; wobei das erste Modul und das zweite Modul parallel geschaltet sind.
A device including a first and second monitoring unit, the first monitoring unit detecting a first voltage potential and the second monitoring unit detecting a second voltage potential, the monitoring units comparing the first voltage potential and the second voltage potential to the value of the supply voltage and activate a control unit as a function of the comparisons, the control unit determining a switching point in time of a second power transistor, and an arrangement being present which generates current when the second power transistor is being switched on, the current changing the first voltage potential, and the control unit activates a first power transistor when the first voltage potential has the same value as the supply voltage, so that the first power transistor is de-energized.
Erfindungsgemäß wird ein Verfahren zur Optimierung des Betriebs eines in einem Regelkreis für einen Aufwärtswandler vorgesehenen digitalen Reglers (30) zur Verfügung gestellt. Das Verfahren umfasst die folgenden Verfahrensschritte: Auswerten (S1) mindestens einer Ausgangsgröße des digitalen Reglers im Betrieb des Aufwärtswandlers. Schätzen (S2) des instantanen Lastwiderstandswertes (RL) in der Strecke des Regelkreises anhand der mindestens einen ausgewerteten Ausgangsgröße. Einstellen (S3) mindestens eines Reglerkoeffizienten des digitalen Reglers anhand des geschätzten instantanen Lastwiderstandswertes (RL) im Betrieb des Aufwärtswandlers. Erfindungsgemäß bedingt eine Veränderung in der Einstellung des mindestens einen Reglerkoeffizienten eine Veränderung der Transitfrequenz im Regelkreis. Ferner wird ein Regelkreis für einen Aufwärtswandler mit einem digitalen Regler zur Verfügung gestellt, welcher eingerichtet ist, um die Schritte des erfindungsgemäßen Verfahrens durchzuführen. Des Weiteren wird ein Computerprogrammprodukt mit computerausführbarem Programmcode zur Durchführung des erfindungsgemäßen Verfahrens zur Verfügung gestellt.
Multilevel-cell (MLC) flash is commonly deployed in today’s high density NAND memories, but low latency and high reliability requirements make it barely used in automotive embedded flash applications. This paper presents a time domain voltage sensing scheme that applies a dynamic voltage ramp at the cells’ control gate (CG) in order to achieve fast and reliable sensing suitable for automotive applications.
In recent years, significant progress was made on switched-capacitor DCDC converters as they enable fully integrated on chip power management. New converter topologies overcame the fixed input-to-output voltage limitation and achieved high efficiency at high power densities. SC converters are attractive to not only mobile handheld devices with small input and output voltages, but also for power conversion in IoTs, industrial and automotive applications, etc. Such applications need to be capable of handling high input voltages of more than 10V. This talk highlights the challenges of the required supporting circuits and high voltage techniques, which arise for high Vin SC converters. It includes level shifters, charge pumps and back-to-back switches. High Vin conversion is demonstrated in a 4:1 SC DCDC converter with an input voltage as high as 17V with a peak efficiency of 45 %, and a buckboost SC converter with an input voltage range starting from 2 up to 13V, which utilizes a total of 17 ratios and achieves a peak efficiency of 81.5 %. Furthermore a highly integrated micro power supply approach is introduced, which is connected directly to the 120/230 Vrms mains, with an output power of 3mW, resulting in a power density >390μW/mm², which exceeds prior art by a factor of 11.