Refine
Document Type
- Conference proceeding (2)
- Journal article (1)
- Book chapter (1)
Language
- English (4)
Has full text
- yes (4)
Is part of the Bibliography
- yes (4)
Institute
- Informatik (4)
Publisher
- IEEE (1)
- SciTePress (1)
- Society for Science and Education (1)
- Springer (1)
Services Oriented Architectures (SOA) have emerged as a useful framework for developing interoperable, large-scale systems, typically implemented using the Web Services (WS) standards. However, the maintenance and evolution of SOA systems present many challenges. SmartLife applications are intelligent user-centered systems and a special class of SOA systems that present even greater challenges for a software maintainer. Ontologies and ontological modeling can be used to support the evolution of SOA systems. This paper describes the development of a SOA evolution ontology and its use to develop an ontological model of a SOA system. The ontology is based on a standard SOA ontology. The ontological model can be used to provide semantic and visual support for software maintainers during routine maintenance tasks. We discuss a case study to illustrate this approach, as well as the strengths and limitations.
Many future Services Oriented Architecture (SOA) systems may be pervasive SmartLife applications that provide real-time support for users in everyday tasks and situations. Development of such applications will be challenging, but in this position paper we argue that their ongoing maintenance may be even more so. Ontological modelling of the application may help to ease this burden, but maintainers need to understand a system at many levels, from a broad architectural perspective down to the internals of deployed components. Thus we will need consistent models that span the range of views, from business processes through system architecture to maintainable code. We provide an initial example of such a modelling approach and illustrate its application in a semantic browser to aid in software maintenance tasks.
The evolution of Services Oriented Architectures (SOA) presents many challenges due to their complex, dynamic and heterogeneous nature. We describe how SOA design principles can facilitate SOA evolvability and examine several approaches to support SOA evolution. SOA evolution approaches can be classified based on the level of granularity they address, namely, service code level, service interaction level and model level. We also discuss emerging trends, such as microservices and knowledge-based support, which can enhance the evolution of future SOA systems.
SmartLife ecosystems are emerging as intelligent user-centered systems that will shape future trends in technology and communication. Biological metaphors of living adaptable ecosystems provide the logical foundation for self-optimizing and self-healing run-time environments for intelligent adaptable business services and related information systems with service-oriented enterprise architectures. The present research in progress work investigates mechanisms for adaptable enterprise architectures for the development of service-oriented ecosystems with integrated technologies like Semantic Technologies, Web Services, Cloud Computing and Big Data Management. With a large and diverse set of ecosystem services with different owners, our scenario of service-based SmartLife ecosystems can pose challenges in their development, and more importantly, for maintenance and software evolution. Our research explores the use of knowledge modeling using ontologies and flexible metamodels for adaptable enterprise architectures to support program comprehension for software engineers during maintenance and evolution tasks of service-based applications. Our previous reference enterprise architecture model ESARC -- Enterprise Services Architecture Reference Cube -- and the Open Group SOA Ontology was extended to support agile semantic analysis, program comprehension and software evolution for a SmartLife applications scenario. The Semantic Browser is a semantic search tool that was developed to provide knowledge-enhanced investigation capabilities for service-oriented applications and their architectures.