Refine
Year of publication
- 2021 (3)
Document Type
- Conference proceeding (2)
- Book (1)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
Die vorliegende Studie zeigt, dass das Thema Smart Innovation (der Einsatz von KI-Systemen im Innovationsprozess) von hoher Relevanz ist und Zustimmung für den Einsatz von KI im Innovationsprozess besteht. Sowohl von den Unternehmen als auch von den Studierenden werden Effizienzsteigerung, schnellere Bearbeitung großer Datenmengen, die Steigerung der Wettbewerbsfähigkeit und Kosteneinsparungen als Gründe für den Einsatz von KI im Innovationsprozess gesehen. In Deutschland finden KI-Technologien bereits jetzt punktuell und branchenunabhängig Anwendung im Innovationsprozess. Einflussfaktoren, wie Hochschulkooperationen, Innovationsabteilungen und Open Innovation können den Einsatz fördern. Vor allem KMU aus den frühen Phasen der Industrialisierung sollten davon Gebrauch machen. In einem Zusammenspiel von menschlicher Expertise und der schnellen und präzisen Datenverarbeitung der KI liegt das Erfolgsgeheimnis eines möglichst effizienten Innovationsprozesses. Es wird deutlich, dass verschiedene Einflussfaktoren erforderlich sind, um die Anwendung von Smart Innovation praktikabel zu gestalten. So gilt es zunächst die technischen Voraussetzungen einer funktionierenden IT-Infrastruktur zu erfüllen. Gleichbedeutend sind offene Fragestellungen hinsichtlich der Datenverfügbarkeit, des Dateneigentums und der Datensicherheit. Ohne rechtlichen Rahmen sind kaum Akteure gewillt, ihre Daten zu teilen und zugänglich zu machen. Erschwert wird der Einsatz von KI durch den nationalen IT-Fachkräftemangel. So sehen sowohl Unternehmen als auch die Studierenden das größte Hindernis im Mangel von KI-relevantem Know-how. Dies hemmt einerseits die Forschung, andererseits fehlt es den Unternehmen an erforderlichen Fachkräften für eine Einführung von KI im Unternehmen. Es ist jedoch notwendig, den Unternehmen durch das Aufzeigen von Anwendungsbeispielen, die Potenziale und Chancen von Smart Innovation zu vermitteln. Es gilt, die anwendungsorientierte Forschung zu fördern und einen reibungslosen Transfer in die Wirtschaft sicherzustellen. Dieser Wissensaustausch erfordert zudem eine höhere unternehmerische Risikobereitschaft. Es wächst die Notwendigkeit, unternehmensspezifische KI-Strategien zu entwerfen. Die Technologien entwickeln sich schnell, es gilt daher auch für Unternehmen sich diesem Fortschritt anzupassen, um den Anschluss nicht zu verlieren und die Wettbewerbsfähigkeit zu sichern. So liegt die größte Herausforderung im grundlegenden Wandel der Geschäftsmodelle, denn die Wertschöpfung erfolgreicher Unternehmen basiert zunehmend auf "digitalen assets". Daten gelten generell als die neue Ressource, als Rohstoff, auch für Smarte Innovationen. Die Bedeutung von Smart Innovation wird in Zukunft weiterhin ansteigen. Kurz- und mittelfristig unterstützt die Schwache KI vor allem bei der Datensammlung und -analyse, bei der Prozessautomatisierung sowie bei der Bedürfnis- und Trendidentifikation. Weiter werden sich inkrementelle Veränderungen im Innovationsmanagement mithilfe von Simulationen und der zufälligen Kombination von Technologien erhofft. Langfristig wird eine stärkere KI den Einsatz der Menschen im Innovationsprozess in Teilen ersetzen können. Ob autonomes Innovieren zukünftig möglich sein wird, hängt zunächst von dem Ausmaß der Neuheit einer Innovation, aber vor allem auch von der Möglichkeit einer kreativen KI ab. Es ist davon auszugehen, dass die Fortschritte im Bereich der KI nicht nur radikale Innovationen ermöglichen werden, sondern auch zu einer strukturellen Veränderung unseres heutigen Verständnisses des Innovationsmanagements führen.
Imagine a world in which the search for tomorrow's trends of (software) products is not subject to a long and laborious data search but is possible with a single mouse click. Through the use of artificial intelligence (AI), this reality is made possible and is to be further advanced through research. The study therefore aims to provide an initial overview of the young research field. Based on research, expert interviews, company and student surveys, current application possibilities of AI in the innovation process (defined as Smart Innovation), existing challenges that slow down the further development are discussed in more detail and future application possibilities are presented. Finally, a recommendation for action is made for business, politics and science to help overcome the current obstacles together and thus drive the future of Smart Innovation.
Imagine a world in which the search for tomorrow's trends is not subject to a long and laborious data search but is possible with a single mouse click. Through the use of artificial intelligence (AI), this reality is made possible and is to be further advanced through research. The study therefore aims to provide an initial overview of the young research field. Based on research, expert interviews, company and student surveys, current application possibilities of AI in the innovation process (defined as Smart Innovation), existing challenges that slow down the further development are discussed in more detail and future application possibilities are presented. Finally, a recommendation for action is made for business, politics and science to help overcome the current obstacles together and thus drive the future of Smart Innovation.