Refine
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Life Sciences (2)
Publisher
Determination of the gel point of formaldehyde-based wood adhesives by using a multiwave technique
(2023)
Determining the instant of gelation of formaldehyde-based wood adhesives as an assessment parameter for their curing rate is important for optimizing the curing behavior. Due to the stoichiometrically imbalanced networks of formaldehyde-based adhesives, the crossover point of storage G′ and loss modulus G″ cannot unconditionally be assumed as the gel point in oscillatory time sweeps as the material response is frequency-dependent. This study aims to determine the gel point of selected adhesives by the isothermal multiwave oscillatory shear test. A thorough comparison between the gel and the crossover point of G′ and G″ is performed. Rheokinetic analysis showed no significant difference between the activation energies calculated at the gel point determined by a multiwave test and the crossover point obtained by the time sweep test. Hence, for resins with similar curing reactions, a reliable determination of gel point by applying a multiwave test is needed for a comparison of their reactivity.
Comparative analysis of the chemical and rheological curing kinetics of formaldehyde-based wood adhesives is crucial for assessing their respective performance. Differential scanning calorimetry (DSC) and rheometry are the conventional techniques used for monitoring the curing processes leading to crosslinking polymerization of the adhesives. However, the direct comparison of these techniques is inappropriate due to the intrinsic differences in their underlying procedures. To address this challenge, the two adhesive samples were sequentially cured, firstly with rheometry and followed by DSC. The observed higher curing degree in the subsequent DSC procedure underpins the incomplete curing of the samples during initial rheometry. Furthermore, the comparative assessment of the activation energies, molar ratios, and active groups of the two adhesives highlights the importance of the pre-exponential factor in addition to the activation energies, as it attributes to the probability of active groups coinciding at the appropriate spatial arrangement.