Refine
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Texoversum (2)
Publisher
- American Chemical Society (1)
- Elsevier (1)
The wet chemical deposition of solution processed transparent conducting oxides (TCO) provides an alternative low cost and economical deposition technique to realize large-areas of conducting films. Since the price for the most common TCO Indium Tin Oxide rises enormously, Aluminum Zinc Oxide (AZO) as alternative TCO reaches more and more interest. The optoelectronical properties of nanoparticle coatings strongly depend beneath the porosity of the coating on the shape and size of the used particles. By using bigger or rod-shaped particles it is possible to minimize the amount of grain boundaries resulting in an improvement of the electrical properties, whereas particles bigger than 100 nm should not be used if highly transparent coatings are necessary as these big particles scatter the visible light and lower the transmittance of the coatings. In this work we present a simple method to synthesize AZO particles with different shape and size, but comparable electronical properties. We use a simple, well reproducible polyol method for synthesis and influence the shape and size of the particles by adding different amounts of water to the precursor solution. We can show that the addition of aluminum as dopant strongly hinders the crystal growth but the addition of water counteracts this, so that both, spherical and rod-shaped particles can be obtained.
Energy consumption by air-conditioning is expansive and leads to the emission of millions of tons of CO2 every year. A promising approach to circumvent this problem is the reflection of solar radiation: Rooms that would not heat up by irradiation will not need to be cooled down. Especially, transparent conductive metal oxides exhibit high infrared (IR) reflectivity and are commonly applied as low-emissivity coatings (low-e coatings). Indium tin oxide (ITO) coatings are the state-of-the-art application, though indium is a rare and expensive resource. This work demonstrates that aluminum-doped zinc oxide (AZO) can be a suitable alternative to ITO for IR-reflection applications. AZO synthesized here exhibits better emissivity to be used as roofing membrane coatings for buildings in comparison to commercially available ITO coatings. AZO particles forming the reflective coating are generated via solvothermal synthesis routes and obtain high conductivity and IR reflectivity without the need of any further post-thermal treatment. Different synthesis parameters were studied, and their effects on both conductive and optical properties of the AZO nanoparticles were evaluated. To this end, a series of characterization methods, especially 27Al-nuclear magnetic resonance spectroscopy (27Al-NMR) analysis, have been conducted for a deeper insight into the particles’ structure to understand the differences in conductivity and optical properties. The optimized AZO nanoparticles were coated on flexible transparent textile-based roofing membranes and tested as low-e coatings. The membranes demonstrated higher thermal reflectance compared with commercial ITO materials with an emissivity value lowered by 16%.