Refine
Document Type
- Conference proceeding (12)
- Journal article (3)
- Book chapter (3)
Is part of the Bibliography
- yes (18)
Institute
- Informatik (18)
Publisher
- Springer (8)
- Gesellschaft für Informatik (3)
- RWTH Aachen (3)
- Riga Technical University Press (3)
- IEEE (1)
Analysis and planning of Enterprise Architectures (EA) is a complex task for stakeholders. The change of one architecture element has impact on multiple other elements because of manifold relationships and interactions between them. The interactive cockpit approach presented in this paper supports stakeholders planning and analyzing EAs and to tackle the intrinsic complexity. This approach supplies a cockpit with multiple viewpoints to put relevant information side-by-side without losing the context combined with interaction functionality. In this paper, we develop such cockpit starting with relevant use cases, describing a potential design based on well-established foundations in EA modeling, and outline an exemplary usage scenario.
Modern enterprises reshape and transform continuously by a multitude of management processes with different perspectives. They range from business process management to IT service management and the management of the information systems. Enterprise Architecture (EA) management seeks to provide such a perspective and to align the diverse management perspectives. Therefore, EA management cannot rely on hierarchic - in a tayloristic manner designed - management processes to achieve and promote this alignment. It, conversely, has to apply bottom-up, information-centered coordination mechanisms to ensure that different management processes are aligned with each other and enterprise strategy. Social software provides such a bottom-up mechanism for providing support within EAM-processes. Consequently, challenges of EA management processes are investigated, and contributions of social software presented. A cockpit provides interactive functions and visualization methods to cope with this complexity and enable the practical use of social software in enterprise architecture management processes.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology and enterprise systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates collaborative decision mechanisms for adaptive digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support.
Enterprise architecture management (EAM) is a holistic approach to tackle the complex Business and IT architecture. The transformation of an organization’s EA towards a strategy-oriented system is a continuous task. Many stakeholders have to elaborate on various parts of the EA to reach the best decisions to shape the EA towards an optimized support of the organizations’ capabilities. Since the real world is too complex, analyzing techniques are needed to detect optimization potentials and to get all information needed about an issue. In practice visualizations are commonly used to analyze EAs. However these visualizations are mostly static and do not provide analyses. In this article we combine analyzing techniques from literature and interactive visualizations to support stakeholders in EA decision-making.
New or adapted digital business models have huge impacts on Enterprise Architectures (EA) and require them to become more agile, flexible, and adaptable. All these changes are happening frequently and are currently not well documented. An EA consists of a lot of elements with manifold relationships between them. Thus changing the business model may have multiple impacts on other architectural elements. The EA engineering process deals with the development, change and optimization of architectural elements and their dependencies. Thus an EA provides a holistic view for both business and IT from the perspective of many stakeholders, which are involved in EA decision-making processes. Different stakeholders have specific concerns and are collaborating today in often unclear decision-making processes. In our research we are investigating information from collaborative decision-making processes to support stakeholders in taking current decisions. In addition we provide all information necessary to understand how and why decisions were taken. We are collecting the decision-related information automatically to minimize manual time intensive work as much as possible. The core contribution of our research extends a decisional metamodel, which links basic decisions with architectural elements and extends them with an associated decisional case context. Our aim is to support a new integral method for multi perspective and collaborative decision-making processes. We illustrate this by a practice-relevant decision-making scenario for Enterprise Architecture Engineering.
In modern times markets are very dynamic. This situation requires agile enterprises to have the ability to react fast on market influences. Thereby an enterprise’ IT is especially affected, because new or changed business models have to be realized. However, enterprise architectures (EA) are complex structures consisting of many artifacts and relationships between them. Thus analyzing an EA becomes to a complex task for stakeholders. In addition, many stakeholders are involved in decision-making processes, because Enterprise Architecture Management (EAM) targets providing a holistic view of the enterprise. In this article we use concepts of Adaptive Case Management (ACM) to design a decision-making case consisting of a combination of different analysis techniques to support stakeholders in decision-making. We exemplify the case with a scenario of a fictive enterprise.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. The Internet of Things, enterprise social networks, adaptive case management, mobility systems, analytics for big data, and cloud services environments are emerging to support smart connected products and services and the digital transformation. Biological metaphors of living and adaptable ecosystems provide the logical foundation for self-optimizing and resilient run-time environments for intelligent business services and service-oriented enterprise architectures. Our aim is to support flexibility and agile transformations for both business domains and related information technology. The present research paper investigates mechanisms for decision analytics in the context of multi-perspective explorations of enterprise services and their digital enterprise architectures by extending original architecture reference models with state of art elements for agile architectural engineering for the digitization and collaborative architectural decision support. The paper’s context focuses on digital transformations of business and IT and integrates fundamental mappings between adaptable digital enterprise architectures and service-oriented information systems. We are putting a spotlight on the example domain – Internet of Things.
Enterprise Governance, Risk and Compliance (GRC) systems are key to managing risks threatening modern enterprises from many different angles. Key constituent to GRC systems is the definition of controls that are implemented on the different layers of an Enterprise Architecture (EA). As part of the compliance aspect of GRC, the effectiveness of these controls is assessed and reported to relevant management bodies within the enterprise. In this paper we present a metamodel which links controls to the affected elements of an EA and supplies a way of expressing associated assessment techniques and results. We complement the metamodel with an expository instantiation in a cockpit for control compliance applied in an international enterprise in the insurance industry.
The digitization of our society changes the way we live, work, learn, communicate, and collaborate. This disruptive change interacts with all information processes and systems that are important business enablers for the context of digitization since years. Our aim is to support flexibility and agile transformations for both business domains and related information technology with more flexible enterprise information systems through adaptation and evolution of digital enterprise architectures. The present research paper investigates the continuous bottom-up integration of micro-granular architectures for a huge amount of dynamically growing systems and services, like microservices and the Internet of Things, as part of a new digital enterprise architecture. To integrate micro granular architecture models to living architectural model versions we are extending more traditional enterprise architecture reference models with state of art elements for agile architectural engineering to support the digitization of products, services, and processes.
The digital transformation of our society changes the way we live, work, learn, communicate, and collaborate. The digitization of software-intensive products and services is enabled basically by four megatrends: Cloud computing, big data mobile systems, and social technologies. This disruptive change interacts with all information processes and systems that are important business enablers for the current digital transformation. The internet of things, social collaboration systems for adaptive case management, mobility systems and services for big data in cloud services environments are emerging to support intelligent user-centered and social community systems. Modern enterprises see themselves confronted with an ever growing design space to engineer business models of the future as well as their IT support, respectively. The decision analytics in this field becomes increasingly complex and decision support, particularly for the development and evolution of sustainable enterprise architectures (EA), is duly needed. With the advent of intelligent user-centered and social community systems, the challenging decision processes can be supported in more flexible and intuitive ways. Tapping into these systems and techniques, the engineers and managers of the enterprise architecture become part of a viable enterprise, i.e. a resilient and continuously evolving system that develops innovative business models.