Refine
Document Type
- Conference proceeding (6)
- Journal article (1)
Is part of the Bibliography
- yes (7)
Institute
- Technik (7)
Publisher
- IEEE (5)
In this work we investigate the behavior of MIS- and Schottky-gate AlGaN/GaN HEMTs under high-power pulsestress. A special setup capable of applying pulses of constant power is used to evaluate the electro-thermal response in different operating points. For both types of devices, the time to failure was found to decrease with increasing drain-source voltage. Overall, the Schottky-gate device displays a higher pulse robustness. The pulse withstand time of the MIS-gate device is limited by the occurrence of a thermal instability at approximately 240°C while the Schottky-gate device displays a rapid increase of the gate leakage current prior to failure. The mechanism responsible for this gate current is further investigated by static and transient temperature measurements and yielded activation energies of 0.6 eV and 0.84 eV.
This paper investigates the electrothermal stability and the predominant defect mechanism of a Schottky gate AlGaN/GaN HEMT. Calibrated 3-D electrothermal simulations are performed using a simple semiempirical dc model, which is verified against high-temperature measurements up to 440°C. To determine the thermal limits of the safe operating area, measurements up to destruction are conducted at different operating points. The predominant failure mechanism is identified to be hot-spot formation and subsequent thermal runaway, induced by large drain–gate leakage currents that occur at high temperatures. The simulation results and the high temperature measurements confirm the observed failure patterns.
This work investigates the electro-thermal behavior and failure mechanism of a 600V depletion-mode GaN HEMT by experimental analysis and numerical thermal simulations. For this device, the positive temperature coefficient of the draingate leakage current can lead to the formation of hot spots. This localized thermal runaway which ultimately results in a breakdown of the inherent drain-gate junction is found to be the dominant cause of failure.
The superior electrical and thermal properties of silicon carbide (SiC) allow further shrinking of the active area of future power semiconductor devices. A lower boundary of the die size can be obtained from the thermal impedance required to withstand the high power dissipation during a short-circuit event. However, this implies that the power distribution is homogeneous and that no current filamentation has to be considered. Therefore, this work investigates this assumption by evaluating the stability of a SiC-MOSFET over a wide range of operation conditions by measurements up to destruction, thermal simulations, and high-temperature characterization.
This paper presents a measurement setup and an assembly technique suitable for characterization of power semiconductor devices under very high temperature conditions exceeding 500°C. An important application of this is the experimental investigation of wide bandgap semiconductors. Measurement results are shown for a 1200V SiC MOSFET and a 650V depletion mode GaN HEMT.