Refine
Document Type
- Journal article (3)
- Conference proceeding (2)
- Book chapter (1)
Is part of the Bibliography
- yes (6)
Institute
- Life Sciences (6)
Publisher
- CRC Press (1)
- Elsevier (1)
- Institut für Holztechnologie (1)
- Springer (1)
- Technical Conference Management (1)
The powder coating of veneered particle boards by the sequence electrostatic powder application -powder curing via hot pressing is studied in order to create high gloss surfaces. To obtain an appealingaspect, veneer Sheets were glued by heat and pressure on top of particle boards and the resulting surfaceswere used as carrier substrates for powder coat finishing. Prior to the powder coating, the veneeredparticle board surfaces were pre-treated by sanding to obtain good uniformity and the boards werestored in a climate chamber at controlled temperature and humidity conditions to adjust an appropriate electrical surface resistance. Characterization of surface texture was done by 3D microscopy. The surfaceelectrical resistance was measured for the six veneers before and after their application on the particleboard surface. A transparent powder top-coat was applied electrostatically onto the veneered particleboard surface. Curing of the powder was done using a heated press at 130◦C for 8 min and a smooth, glossy coating was obtained on the veneered surfaces. By applying different amounts of powder thecoating thickness could be varied and the optimum amount of powder was determined for each veneer type.
In the powder coating of veneered particle boards the highly reactive hybrid epoxy/polyester powder transparent Drylac 530 Series from TIGER Coatings GmbH & Co. KG, Wels, Austria was used. Curing is accelerated by a mixture of catalysts reaching curing times of 3 min at 150 °C or 5 min at 135 °C which allows for energy and time savings making Drylac Series 530 powder suitable for the coating of temperaturesensitive substrates such as MDF and wood.
Powder coatings provide several advantages over traditional coatings: environmental friendliness, freedom of design, robustness and resistance of surfaces, possibility to seamlessly all-around coating, fast production process, cost-effectiveness. In the last years these benefits of the powder coating technology have been adopted from metal to heat-sensitive natural fibre/ wood based substrates (especially medium density fibre boards- MDF) used for interior furniture applications. Powder coated MDF furniture parts are gaining market share already in the classic furniture applications kitchen, bathroom, living and offices. The acceptance of this product is increasing as reflected by excellent growth rates and an increasing customer base. Current efforts of the powder coating industry to develop new powders with higher reactivity (i.e. lower curing temperatures and shorter curing times; e.g. 120°C/5min) will enable the powder coating of other heat-sensitive substrates like natural fibre composites, wood plastic composites, light weight panels and different plastics in the future. The coating could be applied and cured by the conventional powder coating process (electrostatic application, and melting and curing in an IR-oven) or by a new powder coating procedure based on the in-mould-coating (IMC) technique which is already established in the plastic industry. Extra value could be added in the future by the functional powder toner printing of powder coated substrates using the electrophotographic printing technology, meeting the future demand of both individualization of the furniture part surface by applying functional 3D textures and patterns and individually created coloured images and enabling shorter delivery times for these individualized parts. The paper describes the distinctiveness of powder coating on natural fibre/ wood based substrates, the requirements of the substrate and the coating powder.
The powder coating of wood products as an emerging environmentally sustainable coating technology holds promise in terms of novel product quality features for engineered wood like medium-density fiberboards (MDFs). However, one major limitation currently impeding widespread application of powder coating technology is the availability of MDF panels that are suitable for this process. Typically, special-grade MDF panels are required that are more costly than standard-grade MDF panels to provide reliable coating quality, which makes powder coating economically unattractive for many users. Methods are needed that allow extending the range of available MDF grades. In the present study, three surface pretreatment approaches for MDFs were studied to increase the processability of standard-grade MDF in the powder coating process: atmospheric plasma pretreatment, infrared irradiation, and moisture equilibration in a climate chamber prior to electrostatic powder application. While atmospheric plasma treatment had no beneficial effect on the use of standard-grade MDF panels, both infrared preheating and preconditioning of the panels under controlled temperature–humidity conditions demonstrated that the range of MDF panels suitable for powder coating can be significantly extended by appropriate selection of the pretreatment procedure.
Despite the significant potential offered by the powder coating process for finishing wood-based materials, until now it has been used almost exclusively for coating Medium Density Fiber Board (MDF). A research project aims to develop processes and substrate materials that will allow lightweight boards to be powder coated.
In der vorliegenden Studie werden typische, kommerziell erhältliche und mit unterschiedlichen Lacksystemen beschichtete MDF für den Küchenbereich hinsichtlich ihres Emissionsverhaltens und deren Oberflächeneigenschaften verglichen: wasserlack-, lösungsmittellack- und pulverlackbasierte Oberflächen. Es zeigt sich, dass eine Pulverlackierung insgesamt zu höherwertigen Produkten führt, sowohl in Bezug auf Kratzbeständigkeit, Haftung und Beständigkeit gegen feuchte Hitze als auch insbesondere in Bezug auf VOC-Emissionen. Die Wasserlackoberflächen schnitten hinsichtlich ihres Emissionsverhaltens deutlich besser ab als die lösemittelbasierten Beschichtungssysteme und zeigten in Bezug auf die Oberflächeneigenschaften mit einer Ausnahme vergleichbare Kennwerte.