Refine
Document Type
- Journal article (2)
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Life Sciences (2)
Publisher
Malignant primary brain tumors are a group of highly aggressive and often infiltrating tumors that lack adequate therapeutic treatments to achieve long time survival. Complete tumor removal is one precondition to reach this goal. A promising approach to optimize resection margins and eliminate remaining infiltrative so-called guerilla cells is photodynamic therapy (PDT) using organic photosensitizers that can pass the disrupted blood–brain-barrier and selectively accumulate in tumor tissue. Hypericin fulfills these conditions and additionally offers outstanding photophysical properties, making it an excellent choice as a photosensitizing molecule for PDT. However, the actual hypericin-induced PDT cell death mechanism is still under debate. In this work, hypericin-induced PDT was investigated by employing the three distinct fluorescent probes hypericin, resorufin and propidium iodide (PI) in fluorescence-lifetime imaging microscopy (FLIM). This approach enables visualizing the PDT-induced photodamaging and dying of single, living glioma cells, as an in vitro tumor model for glioblastoma. Hypericin PDT and FLIM image acquisition were simultaneously induced by 405 nm laser irradiation and sequences of FLIM images and fluorescence spectra were recorded to analyze the PDT progression. The reproducibly observed cellular changes provide insight into the mechanism of cell death during PDT and suggest that apoptosis is the initial mechanism followed by necrosis after continued irradiation. These new insights into the mechanism of hypericin PDT of single glioma cells may help to adjust irradiation doses and improve the implementation as a therapy for primary brain tumors.
We study three-color Förster resonance energy transfer (triple FRET) between three spectrally distinct fluorescent dyes, a donor and two acceptors, which are embedded in a single polystyrene nanosphere. The presence of triple FRET energy transfer is confirmed by selective acceptor photobleaching. We show that the fluorescence lifetimes of the three dyes are selectively controlled using the Purcell effect by modulating the radiative rates and relative fluorescence intensities when the nanospheres are embedded in an optical Fabry–Pérot microcavity. The strongest fluorescence intensity enhancement for the second acceptor can be observed as a signature of the FRET process by tuning the microcavity mode to suppress the intermediate dye emission and transfer more energy from donor to the second acceptor. Additionally, we show that the triple FRET process can be modeled by coupled rate equations, which allow to estimate the energy transfer rates between donor and acceptors. This fundamental study has the potential to extend the classical FRET approach for investigating complex systems, e.g., optical energy switching, photovoltaic devices, light-harvesting systems, or in general interactions between more than two constituents.