Refine
Document Type
- Conference Proceeding (15)
- Article (4)
Language
- English (19)
Is part of the Bibliography
- yes (19)
Institute
- Informatik (19)
Publisher
- Springer (9)
- Elsevier (4)
- IEEE (3)
- HTWG Konstanz (2)
- Hochschule Reutlingen (1)
The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.
Recognition of sleep and wake states is one of the relevant parts of sleep analysis. Performing this measurement in a contactless way increases comfort for the users. We present an approach evaluating only movement and respiratory signals to achieve recognition, which can be measured non-obtrusively. The algorithm is based on multinomial logistic regression and analyses features extracted out of mentioned above signals. These features were identified and developed after performing fundamental research on characteristics of vital signals during sleep. The achieved accuracy of 87% with the Cohen’s kappa of 0.40 demonstrates the appropriateness of a chosen method and encourages continuing research on this topic.
The goal of this paper pretends to show how a bed system with an embedded system with sensor is able to analyze a person’s movement, breathing and recognizing the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors.
The goal of the presented project is to develop the concept of home e-health centers for barrier-free and cross-border telemedicine. AAL technologies are already present on the market but there is still a gap to close until they can be used for ordinary patient needs. The general idea needs to be accompanied by new services, which should be brought together in order to provide a full coverage of service for the users. Sleep and stress were chosen as predominant influence in the population. The executed scientific study of available home devices analyzing sleep has provided the necessary to select appropriate devices. The first choice for the project implementation is the device EMFIT QS+. This equipment provides a part of a complete system that a home telemedical hospital can provide at a level of precision and communication with internal and/or external health services.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The present work proposes the use of modern ICT technologies such as smartphones, NFCs, internet, and web technologies, to help patients in carrying out their therapies. The implemented system provides a calendar with a reminder of the assumptions, ensures the drug identification through NFC, allows remote assistance from healthcare staff and family members to check and manage the therapy in real-time. The system also provides centralized information on the patient's therapeutic situation, helpful in choosing new compatible therapies.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.