Refine
Document Type
- Conference proceeding (15)
- Journal article (5)
- Book chapter (2)
Language
- English (22)
Is part of the Bibliography
- yes (22)
Institute
- Informatik (22)
Publisher
- Springer (9)
- Elsevier (4)
- IEEE (3)
- HTWG Konstanz (2)
- Università Politecnica delle Marche (2)
- Hochschule Reutlingen (1)
- MDPI (1)
The ballistocardiography is a technique that measures the heart rate from the mechanical vibrations of the body due to the heart movement. In this work a novel noninvasive device placed under the mattress of a bed estimates the heart rate using the ballistocardiography. Different algorithms for heart rate estimation have been developed.
This document presents a new complete standalone system for a recognition of sleep apnea using signals from the pressure sensors placed under the mattress. The developed hardware part of the system is tuned to filter and to amplify the signal. Its software part performs more accurate signal filtering and identification of apnea events. The overall achieved accuracy of the recognition of apnea occurrence is 91%, with the average measured recognition delay of about 15 seconds, which confirms the suitability of the proposed method for future employment. The main aim of the presented approach is the support of the healthcare system with the cost-efficient tool for recognition of sleep apnea in the home environment.
The recovery of our body and brain from fatigue directly depends on the quality of sleep, which can be determined from the results of a sleep study. The classification of sleep stages is the first step of this study and includes the measurement of vital data and their further processing. The non-invasive sleep analysis system is based on a hardware sensor network of 24 pressure sensors providing sleep phase detection. The pressure sensors are connected to an energy-efficient microcontroller via a system-wide bus. A significant difference between this system and other approaches is the innovative way in which the sensors are placed under the mattress. This feature facilitates the continuous use of the system without any noticeable influence on the sleeping person. The system was tested by conducting experiments that recorded the sleep of various healthy young people. Results indicate the potential to capture respiratory rate and body movement.
The goal of this paper pretends to show how a bed system with an embedded system with sensor is able to analyze a person’s movement, breathing and recognizing the positions that the subject is lying on the bed during the night without any additional physical contact. The measurements are performed with sensors placed between the mattress and the frame. An Intel Edison board was used as an endpoint that served as a communication node from the mesh network to external service. Two nodes and Intel Edison are attached to the bottom of the bed frame and they are connected to the sensors.
The main aim of presented in this manuscript research is to compare the results of objective and subjective measurement of sleep quality for older adults (65+) in the home environment. A total amount of 73 nights was evaluated in this study. Placing under the mattress device was used to obtain objective measurement data, and a common question on perceived sleep quality was asked to collect the subjective sleep quality level. The achieved results confirm the correlation between objective and subjective measurement of sleep quality with the average standard deviation equal to 2 of 10 possible quality points.
The present work proposes the use of modern ICT technologies such as smartphones, NFCs, internet, and web technologies, to help patients in carrying out their therapies. The implemented system provides a calendar with a reminder of the assumptions, ensures the drug identification through NFC, allows remote assistance from healthcare staff and family members to check and manage the therapy in real-time. The system also provides centralized information on the patient's therapeutic situation, helpful in choosing new compatible therapies.
Preliminary results of homomorphic deconvolution application to surface EMG signals during walking
(2021)
Homomorphic deconvolution is applied to sEMG signals recorded during walking. Gastrocnemius lateralis and tibialis anterior signals were acquired according to SENIAM recommendation. MUAP parameters like amplitude and scale were estimated, whilst the MUAP shape parameter was fixed. This features a useful time-frequency representation of sEMG signal. Estimation of scale MUAP parameter was verified extracting the mean frequency of filtered EMG signal, extracted from the scale parameter estimated with two different MUAP shape values.
Normal breathing during sleep is essential for people’s health and well-being. Therefore, it is crucial to diagnose apnoea events at an early stage and apply appropriate therapy. Detection of sleep apnoea is a central goal of the system design described in this article. To develop a correctly functioning system, it is first necessary to define the requirements outlined in this manuscript clearly. Furthermore, the selection of appropriate technology for the measurement of respiration is of great importance. Therefore, after performing initial literature research, we have analysed in detail three different methods and made a selection of a proper one according to determined requirements. After considering all the advantages and disadvantages of the three approaches, we decided to use the impedance measurement-based one. As a next step, an initial conceptual design of the algorithm for detecting apnoea events was created. As a result, we developed an activity diagram on which the main system components and data flows are visually represented.
Sleep study can be used for detection of sleep quality and in general bed behaviors. These results can helpful for regulating sleep and recognizing different sleeping disorders of human. In comparison to the leading standard measuring system, which is Polysomnography (PSG), the system proposed in this work is a non-invasive sleep monitoring device. For continuous analysis or home use, the PSG or wearable Actigraphy devices tends to be uncomfortable. Besides, these methods not only decrease practicality due to the process of having to put them on, but they are also very expensive. The system proposed in this paper classifies respiration and body movement with only one type of sensor and also in a noninvasive way. The sensor used is a pressure sensor. This sensor is low cost and can be used for commercial proposes. The system was tested by carrying out an experiment that recorded the sleep process of a subject. These recordings showed excellent results in the classification of breathing rate and body movements.