Refine
Document Type
- Conference proceeding (12)
- Journal article (5)
- Book chapter (2)
Is part of the Bibliography
- yes (19)
Institute
- ESB Business School (19)
Publisher
Zur Entwicklung einer Sofortpreiskalkulation für CNC-Drehteile werden Machine-Learning-Ansätze sowie ein deterministischer Algorithmus untersucht. Der deterministische Algorithmus funktioniert ausschließlich für Drehteile mit geringer Komplexität. Die Machine Learning Modelle hingegen sind zukunftsfähiger, da die ersten Ergebnisse bereits sehr geringe Abweichungswerte zu den festgelegten Referenzpreisen erreichen können. Mit steigendem Datenaufkommen können beide Machine-Learning-Modelle mit geringem Aufwand weiter verbessert werden.
Machine learning (ML) techniques are rapidly evolving, both in academia and practice. However, enterprises show different maturity levels in successfully implementing ML techniques. Thus, we review the state of adoption of ML in enterprises. We find that ML technologies are being increasingly adopted in enterprises, but that small and medium-size enterprises (SME) are struggling with the introduction in comparison to larger enterprises. In order to identify enablers and success factors we conduct a qualitative empirical study with 18 companies in different industries. The results show that especially SME fail to apply ML technologies due to insufficient ML knowhow. However, partners and appropriate tools can compensate this lack of resources. We discuss approaches to bridge the gap for SME.
The aim of this paper is to show to what extent Artificial Intelligence can be used to optimize forecasting capability in procurement as well as to compare AI with traditional statistic methods. At the same time this article presents the status quo of the research project ANIMATE. The project applies Artificial Intelligence to forecast customer orders in medium-sized companies.
Precise forecasts are essential for companies. For planning, decision making and controlling. Forecasts are applied, e.g. in the areas of supply chain, production or purchasing. Medium-sized companies have major challenges in using suitable methods to improve their forecasting ability.
Companies often use proven methods such as classical statistics as the ARIMA algorithm. However, simple statistics often fail while applied for complex non-linear predictions.
Initial results show that even a simple MLP ANN produces better results than traditional statistic methods. Furthermore, a baseline (Implicit Sales Expectation) of the company was used to compare the performance. This comparison also shows that the proposed AI method is superior.
Until the developed method becomes part of corporate practice, it must be further optimized. The model has difficulties with strong declines, for example due to holidays. The authors are certain that the model can be further improved. For example, through more advanced methods, such as a FilterNet, but also through more data, such as external data on holiday periods.
Demand forecasting intermittent time series is a challenging business problem. Companies have difficulties in forecasting this particular form of demand pattern. On the one hand, it is characterized by many non-demand periods and therefore classical statistical forecasting algorithms, such as ARIMA, only work to a limited extent. On the other hand, companies often cannot meet the requirements for good forecasting models, such as providing sufficient training data. The recent major advances of artificial intelligence in applications are largely based on transfer learning. In this paper, we investigate whether this method, originating from computer vision, can improve the forecasting quality of intermittent demand time series using deep learning models. Our empirical results show that, in total, transfer learning can reduce the mean square error by 65 percent. We also show that especially short (65 percent reduction) and medium long (91 percent reduction) time series benefit from this approach.
The time has come : application of artificial intelligence in small- and medium-sized enterprises
(2022)
Artificial intelligence (AI) is not yet widely used in small- and medium-sized industrial enterprises (SME). The reasons for this are manifold and range from not understanding use cases, not enough trained employees, to too little data. This article presents a successful design-oriented case study at a medium-sized company, where the described reasons are present. In this study, future demand forecasts are generated based on historical demand data for products at a material number level using a gradient boosting machine (GBM). An improvement of 15% on the status quo (i.e. based on the root mean squared error) could be achieved with rather simple techniques. Hence, the motivation, the method, and the first results are presented. Concluding challenges, from which practical users should derive learning experiences and impulses for their own projects, are addressed.
Prior to the introduction of AI-based forecast models in the procurement department of an industrial retail company, we assessed the digital skills of the procurement employees and surveyed their attitudes toward a new digital technology. The aim of the survey was to ascertain important contextual factors which are likely to influence the acceptance and the successful use of the new forecast tool. What we find is that the digital skills of the employees show an intermediate level and that their attitudes toward key aspects of new digital technologies are largely positive. Thus, the conditions for high acceptance and the successful use of the models are good, as evidenced by the high intention of the procurement staff to use the models. In line with previous research, we find that the perceived usefulness of a new technology and the perceived ease of use are significant drivers of the willingness to use the new forecast tool.
This study explores the application of the PatchCore algorithm for anomaly classification in hobbing tools, an area of keen interest in industrial artificial intelligence application. Despite utilizing limited training images, the algorithm demonstrates capability in recognizing a variety of anomalies, promising to reduce the time-intensive labeling process traditionally undertaken by domain experts. The algorithm demonstrated an accuracy of 92%, precision of 84%, recall of 100%, and a balanced F1 score of 91%, showcasing its proficiency in identifying anomalies. However, the investigation also highlights that while the algorithm effectively identifies anomalies, it doesn't primarily recognize domain-specific wear issues. Thus, the presented approach is used only for pre-classification, with domain experts subsequently segmenting the images indicating significant wear. The intention is to employ a supervised learning procedure to identify actual wear. This premise will be further investigated in future research studies.
Digitalization increases the pressure for companies to innovate. While current research on digital transformation mostly focuses on technological and management aspects, less attention has been paid to organizational culture and its influence on digital innovations. The purpose of this paper is to identify the characteristics of organizational culture that foster digital innovations. Based on a systematic literature review on three scholarly databases, we initially found 778 articles that were then narrowed down to a total number of 23 relevant articles through a methodical approach. After analyzing these articles, we determine nine characteristics of organizational culture that foster digital innovations: corporate entrepreneurship, digital awareness and necessity of innovations, digital skills and resources, ecosystem orientation, employee participation, agility and organizational structures, error culture and risk-taking, internal knowledge sharing and collaboration, customer and market orientation as well as open-mindedness and willingness to learn.
Forecasting demand is challenging. Various products exhibit different demand patterns. While demand may be constant and regular for one product, it may be sporadic for another, as well as when demand occurs, it may fluctuate significantly. Forecasting errors are costly and result in obsolete inventory or unsatisfied demand. Methods from statistics, machine learning, and deep learning have been used to predict such demand patterns. Nevertheless, it is not clear for what demand pattern, which algorithm would achieve the best forecast. Therefore, even today a large number of models are used to forecast on a test period. The model with the best result on the test period is used for the actual forecast. This approach is computationally and time intensive and, in most cases, uneconomical. In our paper we show the possibility to use a machine learning classification algorithm, which predicts the best possible model based on the characteristics of a time series. The approach was developed and evaluated on a dataset from a B2B-technical-retailer. The machine learning classification algorithm achieves a mean ROC-AUC of 89%, which emphasizes the skill of the model.
Forecasting intermittent and lumpy demand is challenging. Demand occurs only sporadically and, when it does, it can vary considerably. Forecast errors are costly, resulting in obsolescent stock or unmet demand. Methods from statistics, machine learning and deep learning have been used to predict such demand patterns. Traditional accuracy metrics are often employed to evaluate the forecasts, however these come with major drawbacks such as not taking horizontal and vertical shifts over the forecasting horizon into account, or indeed stock-keeping or opportunity costs. This results in a disadvantageous selection of methods in the context of intermittent and lumpy demand forecasts. In our study, we compare methods from statistics, machine learning and deep learning by applying a novel metric called Stock-keeping-oriented Prediction Error Costs (SPEC), which overcomes the drawbacks associated with traditional metrics. Taking the SPEC metric into account, the Croston algorithm achieves the best result, just ahead of a Long Short-Term Memory Neural Network.