Refine
Document Type
- Journal article (5)
- Conference proceeding (1)
- Report (1)
- Working Paper (1)
Is part of the Bibliography
- yes (8)
Institute
- Technik (7)
- ESB Business School (1)
Publisher
Der Anteil mittelständischer Unternehmen, die Standorte im Ausland unterhalten, nimmt seit einigen Jahren zu. Oft finden Auslandsaktivitäten dieser Art in Niedriglohnländern statt. Dort ergeben sich u.a durch die infrastrukturellen Gegebenheiten und durch die verfügbaren Personalressourcen diverse Herausforderungen, insbesondere für die Produktivitätsermittlung und -bewertung innerhalb der Produktion. Dieser Beitrag soll für diese Herausforderungen geeignete Technologien und eine mögliche Vorgehensweise für deren Auswahl vor dem Hintergrund der ländertypischen Herausforderungen aufzeigen.
The paper illustrates the status quo of a research project for the development of a control system enabling CHP units for a demand-oriented electricity production by an intelligent management of the heat storage tank. Thereby the focus of the project is twofold. One is the compensation of the fluctuating power production by the renewable energies solar and wind. Secondly, a reduction of the load on the power grid is intended by a better match of local electricity demand and production. In detail, the general control strategy is outlined, the method utilized for forecasting heat and electricity demand is illustrated as well as a correlation method for the temperature distribution in the heat storage tank based on a Sigmoid function is proposed. Moreover, the simulation model for verification and optimization of the control system and the two field test sites for implementing and testing the system are introduced.
Die zunehmende erneuerbare Stromerzeugung erfordert Anstrengungen, um den damit verbundenen Angebotsschwankungen und der zusätzlichen Netzbelastung entgegen zu wirken. Eine dezentrale und am Bedarf orientierte Stromerzeugung mittels Kraft-Wärme-Kopplung (KWK) kann hier einen wesentlichen Beitrag leisten, um eine sichere und konstante Stromversorgung zu gewährleisten und die Netze zu entlasten. Zu diesem Zweck ist jedoch ein Steuerungssystem erforderlich, das die KWK-Anlagen in die Lage versetzt, sowohl die Deckung des Wärmebedarfs im Objekt aufrecht zu erhalten, als auch die elektrische Energie genau zu den Zeiten zu erzeugen, in denen sie benötigt wird. Die Entkopplung von Stromerzeugung und Deckung des Wärmebedarfs kann dabei über den standardmäßig vorhandenen Wärmespeicher erfolgen. Dieser stellt damit das zentrale Element der Gesamtanlage dar, für die das Steuerungssystem zur Eigenstromoptimierung im Rahmen des Forschungsvorhabens entwickelt und erprobt wurde.
Nowadays CHP units are discussed for the production of electricity on demand rather than for generation of heat providing electricity as a by-product. By this means, CHP units are capable of satisfying a higher share of the electricity demand on-site and in this new role, CHP units are able to reduce the load on the power grid and to compensate for high fluctuations of solar and wind power.
Evidently, a novel control strategy for CHP units is required in order to shift the operation oriented at the heat demand to an operation led by the electricity demand. Nevertheless, the heat generated by the CHP unit needs to be utilized completely in any case, for maintaining energy as well as economic efficiency. Such a strategy has been developed at Reutlingen University, and it will be presented in the paper. Part of the strategy is an intelligent management for the thermal energy storage (TES) ensuring that the storage is at low level in terms of its heat content just before an electricity demand is calling the CHP unit into operation. Moreover, a proper forecast of both, heat and electricity demand, is incorporated and the requirements of the CHP unit in terms of maintenance and lifetime are considered by limiting the number of starts and stops per unit time and by maintaining a certain minimum length of the operation intervals.
All aspects of this novel control strategy are revealed in the paper, which has been implemented on a controller for further testing at two sites in the field. Results from these tests are given as well as results from a simulation model, which is able to evaluate the performance of the control strategy for an entire year.
Die zunehmende erneuerbare Stromerzeugung erfordert Anstrengungen, um den Angebotsschwankungen und der Verteilungsproblematik entgegen zu wirken. Eine dezentrale und am Bedarf orientierte Stromerzeugung mittels Kraft-Wärme-Kopplung (KWK) kann einen wesentlichen Beitrag leisten, um diese Schwankungen auszugleichen und die Netze zu entlasten. Zu diesem Zweck ist aber ein Steuerungssystem für die KWK-Anlagen erforderlich, das sowohl für die Deckung des Wärmebedarfs im Objekt sorgt, als auch gewährleistet, dass die elektrische Energie genau zu den Zeiten erzeugt wird, zu denen sie im Objekt benötigt wird. Die Entkopplung von Stromerzeugung und Deckung des Wärmebedarfs kann dabei über den standardmäßig vorhandenen Wärmespeicher erfolgen. Dieser stellt damit das zentrale Element der Gesamtanlage dar, für die das Steuerungssystem zur Eigenstromoptimierung im Rahmen des Forschungsvorhabens entwickelt und erprobt werden soll.
Im Rahmen des vorliegenden Zwischenberichtes werden die Ergebnisse des 2. des auf insgesamt drei Jahre angelegten Forschungsprojektes vorgestellt. Im Einzelnen sind die Themen Prognose, Bestimmung des Energieinhaltes im Wärmespeicher, stromoptimiertes Steuerungssystem, Aufbau der Feldtestanlagen, Simulation und sozialwissenschaftliche Begleitforschung beschrieben.
Bei den umfangreichen Arbeiten zur Wärme- und Strombedarfsprognose hat sich gezeigt, dass die naive Prognose, die auf der Übernahme der Daten der Vortage beruht, aufgrund des starken Einflusses des individuellen Nutzerverhaltens eine nur schwer zu verbessernde Vorhersagegüte aufweist. Zur Bestimmung des Energieinhaltes im Wärmespeicher wird eine Sigmoidfunktion zur Beschreibung des Temperaturverlaufs über der Speicherhöhe verwendet. Schwierig ist dabei die Anpassung der vier Funktionsparameter mit nur drei Temperaturmesswerten, was jedoch durch geeignete Randbedingungen erreicht werden kann. Das stromoptimierte Steuerungssystem verwendet die Wärmebedarfskurven bei minimalem und maximalem Energieinhalt des Wärmespeichers als Begrenzungen des Optimierungsbereiches, um so die Deckung des Wärmebedarfs zu jeder Zeit zu gewährleisten. Die zwei im Projekt zur Verfügung stehenden Feldtestanlagen wurden mit zusätzlicher Mess- und Steuerungstechnik nachgerüstet, um das entwickelte Steuerungssystem implementieren und testen zu können. Das Simulationsmodell ist im Hinblick auf verschiedene Speicherkonfigurationen erweitert und auf Basis am BHKW-Prüfstand der Hochschule gewonnener Versuchsdaten verifiziert worden, und im Zuge der sozialwissenschaftlichen Begleitforschung werden die Ergebnisse einer im Rahmen des Projektes angefertigten Studie zu den Hemmnissen der KWK vorgestellt.
The paper illustrates the status quo of a research project for the development of a control system enabling CHP units for a demand-oriented electricity production by an intelligent management of the heat storage tank. Thereby the focus of the project is twofold. One is the compensation of the fluctuating power production by the renewable energies solar and wind. Secondly, a reduction of the load on the power grid is intended by better matching local electricity demand and production.
In detail, the general control strategy is outlined, the method utilized for forecasting heat and electricity demand is illustrated as well as a correlation method for the temperature distribution in the heat storage tank based on a Sigmoid function is proposed. Moreover, the simulation model for verification and optimization of the control system and the two field test sites for implementing and testing the system are introduced.
Es ist landläufig bekannt, dass die Stromerzeugung zukünftig auf der Basis erneuerbarer Energien, und damit vornehmlich durch Solar- und Windkraftanlagen, erfolgen soll. Dieses unter dem Stichwort „Energiewende“ formulierte Ziel ist allgemein akzeptiert, und es existieren mittlerweile verschiedene Szenarien, die den Zeitplan dafür vorgeben.
Für Baden-Württemberg hat das Umweltministerium die Strategie „50-80-90“ ausgearbeitet: Danach sollen bis zum Jahr 2050 der Energieverbrauch um 50% reduziert, 80% der benötigten Energie aus erneuerbaren Energien erzeugt und 90% der Treibhausgasemissionen eingespart werden.