Refine
Document Type
- Journal article (32)
- Conference proceeding (23)
- Book chapter (1)
Is part of the Bibliography
- yes (56)
Institute
Publisher
- Elsevier (15)
- Springer (9)
- Hanser (6)
- De Gruyter (5)
- VDI-Verlag (4)
- Leibniz-Universität Hannover (2)
- Stellenbosch University (2)
- AHFE International (1)
- Dialogum GmbH (1)
- Gesellschaft für Arbeitswissenschaft e.V. (1)
Digitisation forms a part of Industrie 4.0 and is both threatening, but also providing an opportunity to transform business as we know it; and can make entire business models redundant. Although companies might realise the need to digitise, many are unsure of how to start this digital transformation. This paper addresses the problems and challenges faced in digitisation, and develops a model for initialising digital transformation in enterprises. The model is based on a continuous improvement cycle, and also includes triggers for innovative and digital thinking within the enterprise. The model was successfully validated in the German service sector.
Zukünftige Montagearbeitsplätze müssen veränderten Herausforderungen, wie z. B. der zunehmenden Anzahl von Mensch Roboter-Kollaborationen, gerecht werden. Die Virtual Reality (VR)-Technik bietet im Rahmen der Arbeitsplatzgestaltung neue Möglichkeiten, diesen veränderten Planungsherausforderungen gerecht zu werden. Die Ausarbeitung stellt eine Methode zur Bewertung des sinnvollen Einsatzes der VR-Technik für einen spezifischen Arbeitsplatz vor. Außerdem wird aufgezeigt, wie die VR-Technik in den Prozess der Arbeitsplatzgestaltung integriert werden kann.
Zur Entwicklung einer Sofortpreiskalkulation für CNC-Drehteile werden Machine-Learning-Ansätze sowie ein deterministischer Algorithmus untersucht. Der deterministische Algorithmus funktioniert ausschließlich für Drehteile mit geringer Komplexität. Die Machine Learning Modelle hingegen sind zukunftsfähiger, da die ersten Ergebnisse bereits sehr geringe Abweichungswerte zu den festgelegten Referenzpreisen erreichen können. Mit steigendem Datenaufkommen können beide Machine-Learning-Modelle mit geringem Aufwand weiter verbessert werden.
Der Zusammenschluss von Unternehmen in Lieferantennetzwerken auf Basis digitaler Plattformen bietet eine Möglichkeit, der Forderung nach Flexibilität in der Industrie 4.0 nachzukommen. Anhand der Charakterisierung eines realen Lieferantennetzwerkes werden use cases für die Lieferantenanbindung hergeleitet. Diese dienen als Diskussionsgrundlage von Potenzialen und Herausforderungen der Anbindung, wobei sich die Frage nach der optimalen Integrationstiefe stellt. Hierzu wurde ein anwenderorientiertes Entscheidungsmodell abgeleitet.
Efficiency in supply chain risk management (SCRM) is a major topic in industries with serial production and a complex supply chain due to limited management and financial resources. A high number of possible risk situations and intertwined processes create a more challenging environment for resource allocation. Managers cannot perform SCRM in all possible supply chain areas and hence have to decide where available resources should be utilised for highest possible risk reduction. This makes it important to quickly and systematically evaluate input and output relationships among risk mitigation actions to determine which actions are deployed first for efficient risk level reduction. This paper introduces a new SCRM method based on the failure mode and effects analysis (FMEA) in order to perform an efficiency-oriented risk action prioritisation. By considering the cost-benefit evaluation of identified risk mitigation actions for each assessed risk and by determining the implementation effort for risk mitigation actions, also considered as the cost for realising a specific risk action the method allows finding those risk and risk mitigation actions, which are most efficient for risk reduction and should be implemented first in the process of risk steering.
Angesichts des breiten Angebotsspektrums neuer Technologien und der Vielzahl verschieden verwendeter Begriffe rund um Industrie 4.0, stehen Unternehmen nicht selten orientierungslos vor der Herausforderung, individuelle Umsetzungsstrategien abzuleiten. Das vorliegende Reifegradmodell ermöglicht die Erfassung bereits im Produktionssystem implementierter Lean Management-Prinzipien und gibt praktikable Antworten auf die evolutionären Visionen, indem es realisierbare und individuelle Migrationspfade in Richtung Industrie 4.0 für Unternehmen aufzeigt.
The paper describes a new stimulus using learning factories and an academic research programme - an M.Sc. in Digital Industrial Management and Engineering (DIME) comprising a double degree - to enhance international collaboration between four partner universities. The programme will be structured in such a way as to maintain or improve the level of innovation at the learning factories of each partner. The partners agreed to use Learning Factory focus areas along with DIME learning modules to stimulate international collaboration. Furthermore, they identified several research areas within the framework of the DIME program to encourage horizontal and vertical collaboration. Vertical collaboration connects faculty expertise across the Learning Factory network to advance knowledge in one of the focus areas, while Horizontal collaboration connects knowledge and expertise across multiple focus areas. Together they offer a platform for students to develop disciplinary and cross-disciplinary applied research skills necessary for addressing the complex challenges faced by industry. Hence, the university partners have the opportunity to develop the learning factory capabilities in alignment with the smart manufacturing concept. The learning factory is thus an important pillar in this venture. While postgraduate students/researchers in the DIME program are the enablers to ensure the success of entire projects, the learning factory provides a learning environment which is entirely conducive to fostering these successful collaborations. Ultimately, the partners are focussed on utilising smart technologies in line with the digitalization of the production process.
What does the factory of tomorrow have to offer for companies? This question and its aspects are the focus of many actual articles and publications. According to Gartner digital twins, one of 2017 strategic technology trends will play a big role for the future of manufacturing. At the moment digital twins are gaining more importance for the industrial application. If companies want to be competitive in the future they have to implement the digital twin in the factories of today. Therefore this paper provides a basic overview of the concept of the smart factory and its requirements. In addition, digital twins are identified as a necessary concept for the evolution of the factory of today.
Der Einsatz von Data Science in der Produktion ermöglicht eine neue Art der Optimierung von Prozessen und Systemen. Die Bedeutung der datengetriebenen Produktionsoptimierung wächst zunehmend im produzierenden Gewerbe. Im Gegensatz zu konventionellen Ansätzen, wie z. B. die des Lean Managements, basiert dieser anhaltende Trend auf der steigenden Verfügbarkeit von Daten im Zuge der digitalen Transformation. Vor allem kleine und mittlere Unternehmen stehen vor der Herausforderung abzuwägen, welche Maßnahmen hierfür ergriffen werden sollten und welche Nutzenpotenziale sich daraus ergeben. Diese Arbeit stellt einen strukturierten Leitfaden zur Vorgehensweise bei Datenanalyseprojekten bezogen auf einen spezifischen Anwendungsfall im Kontext einer frühen Fehlerdetektion und -prävention dar.