Refine
Document Type
- Journal article (5)
Language
- English (5)
Has full text
- yes (5)
Is part of the Bibliography
- yes (5)
Institute
- Life Sciences (5)
Publisher
- Wiley (3)
- MDPI (1)
- Springer International Publishing (1)
Fast pyrolysis as a valorization mechanism for banana rachis and low-density polyethylene waste
(2021)
Banana rachis and low-density polyethylene (LDPE) were selected as secondary feedstocks for the study of fast pyrolysis in a free-fall reactor. The experiments were performed at 600 °C for banana rachis and 450 °C for LDPE, based on literature and thermogravimetric analysis. The gaseous products of both feedstocks present similar composition in the C1-C2 compounds, while C3 compounds are only found in LDPE. The liquid products from banana and LDPE correspond to functional groups and shorter hydrocarbons, respectively. Scanning electron microscopy (SEM) and Fourier transform infrared (FTIR) analyses of the char showed important morphological changes to spheres in LDPE and structural changes due to thermal decomposition in the biomass. The pyrolysis char has high potential as adsorbent, encapsulation, or catalyst.
Bioenergy production is a new and promising industry in Ecuador. However, a confusing variety of laws, which are spread among different regulating institutions, regulate the agricultural sector. Such dispersion makes it difficult for farmers and businesses to understand applicable rights, duties, regulations and agricultural policies. Moreover, this rather young industry lacks important experience. In the first section of this work, the existing Ecuadorian legislation on bioenergy is presented and analyzed. Then, a brief, thorough analysis and comparison are carried out for experiences not only in developed countries, but also with similar cultural frameworks and comparable climatic conditions. The results are summarized as specific recommendations that have been handed to the National Agricultural Chamber of Ecuador from academia for the proposal of a Unified Agricultural Code established in the Ecuadorian legal hierarchy as an Organic Law.
Characterization of low density polyethylene greenhouse films during the composting of rose residues
(2022)
This study presents an evaluation of a potential alternative to plastic degradation in the form of organic composting. It stems from the urgent need of finding solutions to the plastic residues and focuses on the compost-based degradation of greenhouse film covers in an important rose exporter company in Ecuador. Thus, this study analyzes the physical, chemical, and biological changes of rose wastes composting, and also evaluates the stability of new and aged agricultural plastic under these conditions. Interestingly, results of compost characterization show a slow degradation rate of organic matter and total organic carbon, along with a significant increase in pH and rise of bacterial populations. However, the results demonstrate that despite these findings, composting conditions had no significant influence on plastic degradation, and while deterioration of aged plastic samples was reported in some tests, it may be the result of environmental conditions and a prolonged exposure to solar radiation. Importantly, these factors could facilitate the adhesion of microorganisms and promote plastic biodegradation. Hence, it is encouraged for future studies to analyze the ecotoxicity of plastics in the compost, as well as isolate, identify, and evaluate the possible biodegradative potential of these microorganisms as an alternative to plastic waste management.
Modifying the natural characteristics of PLA 3D-printed models is of interest in various research areas in which 3D-printing is applied. Thus, in this study, we describe the simple impregnation of FDM 3D-printed PLA samples with well-defined silver nanoparticles and an iron metal salt. Quasi-spherical and dodecahedra silver particles were strongly attached at the channels of 3D-printed milli-fluidic reactors to demonstrate their attachment and interaction with the flow, as an example. Furthermore, Fenton-like reactions were successfully developed by an iron catalyst impregnated in 3D-printed stirrer caps to induce the degradation of a dye and showed excellent reproducibility.
Highly active MgP catalyst for biodiesel production and polyethylene terephthalate depolymerization
(2022)
A highly active heterogeneous catalyst was designed and employed for two relevant transesterification reactions. i. e. biodiesel production and depolymerization of polyethylene terephthalate (PET). The material was prepared in the presence of pectin by the co-precipitation method followed by calcination at 600°C (MgP). MgP is efficient for biodiesel production, with a yield of ≈99% in 6 h/65°C, and with a molar ratio methanol: oil of 21:1. The reference material (MgR, prepared in absence of pectin) showed a poor catalytic performance in the same experimental conditions. For the methanolysis of PET, 100% PET conversion was obtained with 3 wt% catalyst, 200:1 methanol: PET molar ratio at milder conditions 160°C/4 h, compared to a 33% conversion without the presence of a catalyst. The catalyst showed remarkable stability and negligible deactivation after five consecutive runs. Materials were characterized by SEM, XRD, IR, TGA, and BET.