Refine
Year of publication
- 2023 (2)
Document Type
- Journal article (2)
Language
- English (2)
Is part of the Bibliography
- yes (2)
Institute
- Life Sciences (2)
Publisher
- American Chemical Society (1)
- Elsevier (1)
Rapid and robust quality monitoring of the composition of meat pastes is of fundamental importance in processing meat and sausage products. Here, an in-line near-infrared spectroscopy/micro-electro-mechanical-system-(MEMS)-based approach, combined with multivariate data analysis, was used for measuring the constituents fat, protein, water, and salt in meat pastes within a typical range of meat paste recipes. The meat pastes were spectroscopically characterized in-line with a novel process analyzer prototype. By integrating salt content in the calibration set, robust predictive PLSR models of high accuracy (R2 > 0.81) were obtained that take interfering matrix effects of the minor and NIR-inactive meat paste recipe component “salt” into account as well. The nonlinear blending behavior of salt concentration on the spectral features of meat pastes is discussed based on a designed mixture experiment with four systematically varied components.
The properties of polyelectrolyte multilayers are ruled by the process parameters employed during self-assembly. This is the first study in which a design of experiment approach was used to validate and control the production of ultrathin polyelectrolyte multilayer coatings by identifying the ranges of critical process parameters (polyelectrolyte concentration, ionic strength and pH) within which coatings with reproducible properties (thickness, refractive index and hydrophilicity) are created. Mathematical models describing the combined impact of key process parameters on coatings properties were developed demonstrating that only ionic strength and pH affect the coatings thickness, but not polyelectrolyte concentration. While the electrolyte concentration had a linear effect, the pH contribution was described by a quadratic polynomial. A significant contribution of this study is the development of a new approach to estimate the thickness of polyelectrolyte multilayer nanofilms by quantitative rhodamine B staining, which might be useful in all cases when ellipsometry is not feasible due to the shape complexity or small size of the coated substrate. The novel approach proposed here overcomes the limitations of known methods as it offers a low spatial sampling size and the ability to analyse a wide area without restrictions on the chemical composition and shape of the substrate.