Refine
Document Type
- Journal article (27)
- Conference proceeding (3)
- Book chapter (1)
- Doctoral Thesis (1)
Is part of the Bibliography
- yes (32)
Institute
- ESB Business School (31)
- Life Sciences (1)
Publisher
- Elsevier (22)
- Hanser (2)
- VDI Fachmedien (2)
- Fraunhofer Verlag (1)
- Leibniz-Universität Hannover (1)
- MDPI (1)
- Springer (1)
- Taylor & Francis (1)
In dieser Arbeit wird ein Ansatz zur Unterstützung von Werkern, Meistern und Instandhaltern vorgestellt, der es ermöglicht, aus der auftretenden Situation heraus (ad hoc), auf aktuelle notwendige Informationen und die Zusammenhänge in einer variantenreichen Serienfertigung zuzugreifen. Schwerpunkt bildet das unternehmensneutrale Gesamtkonzept des fertigungsnahen Kontextinformationssystems, das aus dem Produktionsumgebungsmodell und der Systemarchitektur besteht. Das Produktionsumgebungsmodell beschreibt und vernetzt enthaltene Informationen und Zusammenhänge einer variantenreichen Serienfertigung. Hauptordnungskriterien sind hier die Zugehörigkeit zu einer bestimmten Gruppe (Typ), die Identität eines Gegenstands, dessen Ort und Betriebszustand über die Zeit. Die Systemarchitektur ist modular aufgebaut. Die Module werden in Erfassungsmodule, Kontextverwaltungsmodule, Funktionsmodule zur automatischen und manuellen Informationsfilterung sowie Präsentationsmodule untergliedert und kommunizieren über eine einheitliche Schnittstelle.
Manufacturing has to adapt to changing situations in order to stay competitive.It demands a flexible and easy-to-use integration of production equipment and ICT systems. The contribution of this paper is the presentation of the implementation of the Manufacturing Integration Assistant (MIALinx). The integration steps range from integrating sensors over collecting and rule-based processing of sensor information to the execution of required actions. Furthermore, we describe the implementation of MIALinx by commissioning it in a manufacturing environment to retrofit legacy machines for Industrie 4.0. Finally, we validate the suitability of our approach by applying our solution in a medium-size company.
In smart factories, maintenance is still an important aspect to safeguard the performance of their production. Especially in case of failures of machine components diagnosis is a time-consuming task. This paper presents an approach for a cyber-physical failure management system, which uses information from machines such as programmable logic controller or sensor data and IT systems to support the diagnosis and repairing process. Key element is a model combining the different information sources to detect deviations and to determine a probable failed component. Furthermore, the approach is prototypically implemented for leakage detection in compressed air networks.
The flexible and easy-to-use integration of production equipment and IT systems on the shop floor becomes more and more a success factor for manufacturing to adapt rapidly to changing situations. The approach of the Manufacturing Integration Assistant (MIALinx) is to simplify this challenge. The integration steps range from integrating sensors over collecting and rule-based processing of sensor information to the execution of required actions. This paper presents the implementation of MIALinx to retrofit legacy machines for Industry 4.0 in a manufacturing environment and focus on the concept and implementation of the easy-to-use user interface as a key element.
Driven by digital transformation, manufacturing systems are heading towards autonomy. The implementation of autonomous elements in manufacturing systems is still a big challenge. Especially small and medium sized enterprises (SME) often lack experience to assess the degree of Autonomous Production. Therefore, a description model for the assessment of stages for Autonomous Production has been identified as a core element to support such a transformation process. In contrast to existing models, the developed SME-tailored model comprises different levels within a manufacturing system, from single manufacturing cells to the factory level. Furthermore, the model has been validated in several case studies.
Process quality has reached a high level on mass production, utilizing well known methods like the DoE. The drawback of the unterlying statistical methods is the need for tests under real production conditions, which cause high costs due to the lost output. Research over the last decade let to methods for correcting a process by using in-situ data to correct the process parameters, but still a lot of pre-production is necessary to get this working. This paper presents a new approach in improving the product quality in process chains by using context data - which in part are gathered by using Industry 4.0 devices - to reduce the necessary pre-production.
In recent years, machine learning algorithms have made a huge development in performance and applicability in industry and especially maintenance. Their application enables predictive maintenance and thus offers efficiency increases. However, a successful implementation of such solutions still requires high effort in data preparation to obtain the right information, interdisciplinarity in teams as well as a good communication to employees. Here, small and medium sized enterprises (SME) often lack in experience, competence and capacity. This paper presents a systematic and practice-oriented method for an implementation of machine learning solutions for predictive maintenance in SME, which has already been validated.
The maintenance of railway infrastructure remains a challenge. Data acquisition technologies have evolved because of Industry 4.0, expanding the capabilities of predictive maintenance. Despite the advances, the potential of these emerging technologies has not been fully realised. This paper presents a technology selection framework in support of railway infrastructure predictive maintenance, which is based on qualitative methods. It consists of three stages, including the mapping of the infrastructure characteristics with the identified technologies, the evaluation of the most appropriate technologies, and the sourcing thereof. This presents the collective decision support output of the framework.
The technologies of digital transformation, such as the Internet-of-Things (IoT), artificial intelligence or predictive maintenance enable significant efficiency gains in industry and are becoming increasingly important as a competitive factor. However, their successful implementation and creative, future application requires the broad acceptance and knowledge of non-IT-related groups, such as production management students, engineers or skilled workers, which is still lacking today. This paper presents a low-threshold training concept bringing IoT-technologies and applications into manufacturing related higher education and employee training. The concept addresses the relevant topics starting from IoT-basics to predictive maintenance using mobile low-cost hardware and infrastructure.
Maintenance is an increasingly complex and knowledge-intensive field. In order to address these challenges, assistance systems based on augmented, mixed, or virtual reality can be applied. Therefore, the objective of this paper is to present a framework that can be used to identify, select, and implement an assistance system based on reality technology in the maintenance environment. The development of the framework is based on a systematic literature review and subject matter expert interviews. The framework provides the best technological and economic solution in several steps. The validation of the framework is carried out through a case study.