Refine
Document Type
- Journal article (19)
- Patent / Standard / Guidelines (3)
- Book chapter (2)
- Doctoral Thesis (1)
- Working Paper (1)
Is part of the Bibliography
- yes (26)
Institute
- Life Sciences (26)
- Texoversum (1)
Publisher
- MDPI (7)
- Springer (6)
- Wiley (3)
- American Chemical Society (1)
- CERN Data Centre (1)
- De Gruyter (1)
- Hanser (1)
- Hindawi (1)
- IM Publications Open LLP (1)
- Universität Tübingen (1)
Unter der Zielsetzung der multimodalen, ortsaufgelösten optischen Spektroskopie für die markierungsfreie Charakterisierung biologischer Materialien nach Morphologie und Chemie werden vier Themenschwerpunkte behandelt.
1. Theorie der elastischen / inelastischen Lichtstreuung und laterale Auflösung in der Mikroskopie
2. Erweiterung eines Raman Mikroskops zu einem multimodalen spektralen Imaging System (MSIS) mit Photonenmigrations-Technologie
3. Erweiterung des MSIS zu Super-Resolution Raman Mikroskopie mit einer Festkörper-Immersionslinse
4. Anwendung des entwickelten MSIS auf biologische Materialien
Auf jeder Stufe der Lebensmittelkette muss von der Herstellung bis zum Inverkehrbringen eine Rückverfolgung der Produkte möglich sein. Erzeuger, Verarbeiter, Transportunternehmen und Händler stehen vor der Herausforderung, Systeme zur Rückverfolgbarkeit effizient in ihre Unternehmensprozesse zu integrieren und gegenseitig zu vernetzen. Für die betriebliche Umsetzung werden die rechtlichen Anforderungen skizziert und die Grundlagen eines Rückverfolgbarkeitssystems vorgestellt.
Due to the wide variety of benign and malignant salivary gland tumors, classification and malignant behavior determination based on histomorphological criteria can be difficult and sometimes impossible. Spectroscopical procedures can acquire molecular biological information without destroying the tissue within the measurement processes. Since several tissue preparation procedures exist, our study investigated the impact of these preparations on the chemical composition of healthy and tumorous salivary gland tissue by Fourier-transform infrared (FTIR) microspectroscopy. Sequential tissue cross-sections were prepared from native, formalin-fixed and formalin-fixed paraffin-embedded (FFPE) tissue and analyzed. The FFPE cross-sections were dewaxed and remeasured. By using principal component analysis (PCA) combined with a discriminant analysis (DA), robust models for the distinction of sample preparations were built individually for each parotid tissue type. As a result, the PCA-DA model evaluation showed a high similarity between native and formalin-fixed tissues based on their chemical composition. Thus, formalin-fixed tissues are highly representative of the native samples and facilitate a transfer from scientific laboratory analysis into the clinical routine due to their robust nature. Furthermore, the dewaxing of the cross-sections entails the loss of molecular information. Our study successfully demonstrated how FTIR microspectroscopy can be used as a powerful tool within existing clinical workflows.
Different types of raw cotton were investigated by a commercial ultraviolet-visible/near infrared (UV-Vis/NIR) spectrometer (210–2200 nm) as well as on a home-built setup for NIR hyperspectral imaging (NIR-HSI) in the range 1100–2200 nm. UV-Vis/NIR reflection spectroscopy reveals the dominant role proteins, hydrocarbons and hydroxyl groups play in the structure of cotton. NIR-HSI shows a similar result. Experimentally obtained data in combination with principal component analysis (PCA) provides a general differentiation of different cotton types. For UV-Vis/NIR spectroscopy, the first two principal components (PC) represent 82 % and 78 % of the total data variance for the UV-Vis and NIR regions, respectively. Whereas, for NIR-HSI, due to the large amount of data acquired, two methodologies for data processing were applied in low and high lateral resolution. In the first method, the average of the spectra from one sample was calculated and in the second method the spectra of each pixel were used. Both methods are able to explain ≥90 % of total variance by the first two PCs. The results show that it is possible to distinguish between different cotton types based on a few selected wavelength ranges. The combination of HSI and multivariate data analysis has a strong potential in industrial applications due to its short acquisition time and low-cost development. This study opens a novel possibility for a further development of this technique towards real large-scale processes.
A laboratory prototype for hyperspectral imaging in ultra-violet (UV) region from 225 to 400 nm was developed and used to rapidly characterize active pharmaceutical ingredients (API) in tablets. The APIs are ibuprofen (IBU), acetylsalicylic acid (ASA) and paracetamol (PAR). Two sample sets were used for a comparison purpose. Sample set one comprises tablets of 100% API and sample set two consists of commercially available painkiller tablets. Reference measurements were performed on the pure APIs in liquid solutions (transmission) and in solid phase (reflection) using a commercial UV spectrometer. The spectroscopic part of the prototype is based on a pushbroom imager that contains a spectrograph and charge-coupled device (CCD) camera. The tablets were scanned on a conveyor belt that is positioned inside a tunnel made of polytetrafluoroethylene (PTFE) in order to increase the homogeneity of illumination at the sample position. Principal component analysis (PCA) was used to differentiate the hyperspectral data of the drug samples. The first two PCs are sufficient to completely separate all samples. The rugged design of the prototype opens new possibilities for further development of this technique towards real large-scale application.
Salivary gland tumors (SGTs) are a relevant, highly diverse subgroup of head and neck tumors whose entity determination can be difficult. Confocal Raman imaging in combination with multivariate data analysis may possibly support their correct classification. For the analysis of the translational potential of Raman imaging in SGT determination, a multi-stage evaluation process is necessary. By measuring a sample set of Warthin tumor, pleomorphic adenoma and non-tumor salivary gland tissue, Raman data were obtained and a thorough Raman band analysis was performed. This evaluation revealed highly overlapping Raman patterns with only minor spectral differences. Consequently, a principal component analysis (PCA) was calculated and further combined with a discriminant analysis (DA) to enable the best possible distinction. The PCA-DA model was characterized by accuracy, sensitivity, selectivity and precision values above 90% and validated by predicting model-unknown Raman spectra, of which 93% were classified correctly. Thus, we state our PCA-DA to be suitable for parotid tumor and non-salivary salivary gland tissue discrimination and prediction. For evaluation of the translational potential, further validation steps are necessary.
Cotton contamination by honeydew is considered one of the significant problems for quality in textiles as it causes stickiness during manufacturing. Therefore, millions of dollars in losses are attributed to honeydew contamination each year. This work presents the use of UV hyperspectral imaging (225–300 nm) to characterize honeydew contamination on raw cotton samples. As reference samples, cotton samples were soaked in solutions containing sugar and proteins at different concentrations to mimic honeydew. Multivariate techniques such as a principal component analysis (PCA) and partial least squares regression (PLS-R) were used to predict and classify the amount of honeydew at each pixel of a hyperspectral image of raw cotton samples. The results show that the PCA model was able to differentiate cotton samples based on their sugar concentrations. The first two principal components (PCs) explain nearly 91.0% of the total variance. A PLS-R model was built, showing a performance with a coefficient of determination for the validation (R2cv) = 0.91 and root mean square error of cross-validation (RMSECV) = 0.036 g. This PLS-R model was able to predict the honeydew content in grams on raw cotton samples for each pixel. In conclusion, UV hyperspectral imaging, in combination with multivariate data analysis, shows high potential for quality control in textiles.
The critical process parameters cell density and viability during mammalian cell cultivation are assessed by UV/VIS spectroscopy in combination with multivariate data analytical methods. This direct optical detection technique uses a commercial optical probe to acquire spectra in a label-free way without signal enhancement. For the cultivation, an inverse cultivation protocol is applied, which simulates the exponential growth phase by exponentially replacing cells and metabolites of a growing Chinese hamster ovary cell batch with fresh medium. For the simulation of the death phase, a batch of growing cells is progressively replaced by a batch with completely starved cells. Thus, the most important parts of an industrial batch cultivation are easily imitated. The cell viability was determined by the well-established method partial least squares regression (PLS). To further improve process knowledge, the viability has been determined from the spectra based on a multivariate curve resolution (MCR) model. With this approach, the progress of the cultivations can be continuously monitored solely based on an UV/VIS sensor. Thus, the monitoring of critical process parameters is possible inline within a mammalian cell cultivation process, especially the viable cell density. In addition, the beginning of cell death can be detected by this method which allows us to determine the cell viability with acceptable error. The combination of inline UV/VIS spectroscopy with multivariate curve resolution generates additional process knowledge complementary to PLS and is considered a suitable process analytical tool for monitoring industrial cultivation processes.
Die Erfindung betrifft eine Vorrichtung und Verfahren zur Analyse eines Materialstroms (S) mit einem Einlassbereich (E), einem Messbereich (M) und einen Auslassbereich (A) sowie mit einer ersten Weiche (W1) und einer zweiten Weiche (W2) und einem Umlenkbereich (U), wobei die beiden Weichen (W1, W2) in einem ersten Schaltzustand (Z1) einen durchgängigen ersten Materialdurchströmungsraum vom Einlassbereich (E) über die erste Weiche (W1) durch den Messbereich (M) über die zweite Weiche (W2) bis zum Auslassbereich (A) ausbilden und in einem zweiten Schaltzustand einen durchgängigen zweiten Materialdurchströmungsraum vom Einlassbereich (E) über die erste Weiche (W1) durch den Umlenkbereich (U) über die zweite Weiche (W2) bis zum Auslassbereich (A) ausbilden.
Scanning Near-Field Optical Microscopy (SNOM) has developed during recent decades into a valuable tool to optically image the surface topology of materials with super-resolution. With aperture-based SNOM systems, the resolution scales with the size of the aperture, but also limits the sensitivity of the detection and thus the application for spectroscopic techniques like Raman SNOM. In this paper we report the extension of solid immersion lens (SIL) technology to Raman SNOM. The hemispherical SIL with a tip on the bottom acts as an apertureless dielectric nanoprobe for simultaneously acquiring topographic and spectroscopic information. The SIL is placed between the sample and the microscope objective of a confocal Raman microscope. The lateral resolution in the Raman mode is validated with a cross section of a semiconductor layer system and, at approximately 180 nm, is beyond the classical diffraction limit of Abbe.