Refine
Document Type
- Conference Proceeding (2)
- Article (1)
Language
- English (3)
Has Fulltext
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Technik (3)
Publisher
- IEEE (2)
- VDE Verlag GmbH (1)
An ultra-low power capacitance extrema and ratio detector for electrostatic energy harvesters
(2015)
The power supply is one of the major challenges for applications like internet of things IoTs and smart home. The maintenance issue of batteries and the limited power level of energy harvesting is addressed by the integrated micro power supply presented in this paper. Connected to the 120/230 Vrms mains, which is one of the most reliable energy sources and anywhere indoor available, it provides a 3.3V DC output voltage. The micro power supply consists of a fully integrated ACDC and DCDC converter with one external low voltage SMD buffer capacitor. The micro power supply is fabricated in a low cost 0.35 μm 700 V CMOS technology and covers a die size of 7.7 mm2. The use of only one external low voltage SMD capacitor, results in an extremely compact form factor. The ACDC is a direct coupled, full wave rectifier with a subsequent bipolar shunt regulator, which provides an output voltage around 17 V. The DCDC stage is a fully integrated 4:1 SC DCDC converter with an input voltage as high as 17 V and a peak efficiency of 45 %. The power supply achieves an overall output power of 3 mW, resulting in a power density of 390 μW/mm2. This exceeds prior art by a factor of 11.
A fully passive RFID temperature sensor SoC with an accuracy of ±0.4 ◦C (3σ) from 0 ◦C to 125 ◦C
(2019)
This paper presents a fully passive 13.56 -MHz RFID temperature sensor system-on-chip. Its power management unit operates over a large temperature range using a zero temperature coefficient bias source. On-chip temperature sensing is accomplished with low-voltage, low-power CMOS circuitry, and time-domain signal processing. Two readout commands have been defined to study supply noise sensitivity: 1) standard readout, where just a single set of data is transferred to the reader and 2) serial readout, where several sets of data are sent one after the other to the reader. With the standard readout command, the sensor suffers from interference from the RFID command packet and outputs interference as well, while the sensor outputs no interference with the serial readout command. Measurements show that sensor resolution with serial readout is improved by a factor of approximately 16 compared to standard readout. The chip was fabricated in a standard 0.35-μm CMOS technology and chip-on-board mounted to a tuned RFID transponder coil on an aluminum core FR4 PCB substrate. Real time wireless temperature sensing has been demonstrated with a commercial HF RFID reader. With a two-point calibration, the SoC achieves a 3σ sensing accuracy of ±0.4 ◦C from 0◦C to 125 ◦C.
Nowadays robust, energy-efficient multisensor microsystems often come with heavily restricted power budgets and the characteristic of remaining in certain states for a longer period of time. During this time frame there is no continuous clock signal required which gives the opportunity to suspend the clock until a new transition is requested. In this paper, we present a new topology for on-demand locally clocked finite state machines. The architecture combines a local adaptive clocking approach with synchronous and asynchronous components forming a quasi synchronous system. Using adaptive and local clocking comes with the advantages of reducing the power consumption while saving design effort when no global clock tree is needed. Combining synchronous and asynchronous components is beneficial compared to previous fully asynchronous approaches concerning the design restrictions. The developed topology is verified by the implementation and simulation of a temperature-ADC sensor system realized in a 180 nm process.