Refine
Document Type
- Journal article (10)
- Conference proceeding (8)
- Book chapter (1)
- Doctoral Thesis (1)
Has full text
- yes (20)
Is part of the Bibliography
- yes (20)
Institute
Publisher
- Elsevier (8)
- Springer (5)
- De Gruyter (2)
- Leibniz-Universität Hannover (1)
- MDPI (1)
- SAIIE (1)
- Stellenbosch University (1)
- Universität Hannover (1)
The proper selection of a demand forecasting method is directly linked to the success of supply chain management (SCM). However, today’s manufacturing companies are confronted with uncertain and dynamic markets. Consequently, classical statistical methods are not always appropriate for accurate and reliable forecasting. Algorithms of Artificial intelligence (AI) are currently used to improve statistical methods. Existing literature only gives a very general overview of the AI methods used in combination with demand forecasting. This paper provides an analysis of the AI methods published in the last five years (2017-2021). Furthermore, a classification is presented by clustering the AI methods in order to define the trend of the methods applied. Finally, a classification of the different AI methods according to the dimensionality of data, volume of data, and time horizon of the forecast is presented. The goal is to support the selection of the appropriate AI method to optimize demand forecasting.
Towards a model for holistic mapping of supply chains by means of tracking and tracing technologies
(2022)
The usage of tracking and tracing technologies not only enables transparency and visibility of supply chains but also offers far-reaching advantages for companies, such as ensuring product quality or reducing supplier risks. Increasing the amount of shared information supports both internal and external planning processes as well as the stability and resilience of globally operating value chains. This paper aims to differentiate and define the functionalities of tracking and tracing technologies that are frequently used interchangeably in literature. Furthermore, this paper incorporates influencing factors impacting a sequencing of the connected world in Industry4.0 supply chain networks. This includes legal influences, the embedment of supply chain-related standards, and new possibilities of emerging technologies. Finally, the results are summarized in a model for the holistic mapping of supply chains by means of tracking and tracing technologies. The resulting technological solutions that can be derived from the model enable companies to address missing elements in order to enable the holistic mapping of supply chain events as well as the transparent representation of a digital shadow throughout the entire supply chain.
The fifth mobile communications generation (5G) offers the deployment scenario of licensed 5G standalone non-public networks (NPNs). Standalone NPNs are locally restricted 5G networks based on 5G New Radio technology which are fully isolated from public networks. NPNs operate on their dedicated core network and offer organizations high data security and customizability for intrinsic network control. Especially in networked and cloud manufacturing, 5G is seen as a promising enabler for delay-sensitive applications such as autonomous mobile robots and robot motion control based on the tactile internet that requires wireless communication with deterministic traffic and strict cycling times. However, currently available industrial standalone NPNs do not meet the performance parameters defined in the 5G specification and standardization process. Current research lacks in performance measurements of download, upload, and time delays of 5G standalone-capable end-devices in NPNs with currently available software and hardware in industrial settings. Therefore, this paper presents initial measurements of the data rate and the round-trip delay in standalone NPNs with various end-devices to generate a first performance benchmark for 5G-based applications. In addition, five end-devices are compared to gain insights into the performance of currently available standalone-capable 5G chipsets. To validate the data rate, three locally hosted measurement methods, namely iPerf3, LibreSpeed and OpenSpeedTest, are used. Locally hosted Ping and LibreSpeed have been executed to validate the time delay. The 5G standalone NPN of Reutlingen University uses licensed frequencies between 3.7-3.8 GHz and serves as the testbed for this study.
Blockchain is a technology for the secure processing and verification of data transactions based on a distributed peer-to-peer network that uses cryptographic processes, consensus algorithms, and backward-linked blocks to make transactions virtually immutable. Within supply chain management, blockchain technology offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. However, its complexity requires future employees to have comprehensive knowledge regarding the functionality of blockchain-based applications in order to be able to apply their benefits to scenarios in supply chain and production. Learning factories represent a suitable environment allowing learners to experience new technologies and to apply them to virtual and physical processes throughout value chains. This paper presents a concept to practically transfer knowledge about the technical functionality of blockchain technology to future engineers and software developers working within supply chains and production operations to sensitize them regarding the advantages of decentralized applications. First, the concept proposes methods to playfully convey immutable backward-linked blocks and the embedment of blockchain smart contracts. Subsequently, the students use this knowledge to develop blockchain-based application scenarios by means of an exemplary product in a learning factory environment. Finally, the developed solutions are implemented with the help of a prototypical decentralized application, which enables a holistic mapping of supply chain events.
Supply chains have evolved into dynamic, interconnected supply networks, which increases the complexity of achieving end-to-end traceability of object flows and their experienced events. With its capability of ensuring a secure, transparent, and immutable environment without relying on a trusted third party, the emerging blockchain technology shows strong potential to enable end-to-end traceability in such complex multitiered supply networks. This paper aims to overcome the limitations of existing blockchain-based traceability architectures regarding their object-related event mapping ability, which involves mapping the creation and deletion of objects, their aggregation and disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper proposes a novel ‘blueprint-based’ token concept, which allows clients to group tokens into different types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting conditions, which, for example, are necessary when mapping assembly processes. In addition, the token concept contains logic for reflecting all conducted object-related events in an integrated token history. Finally, for validation purposes, this article implements the architecture’s components in code and proves its applicability based on the Ethereum blockchain. As a result, the proposed blockchain-based traceability architecture covers all object-related supply chain events and proves its general-purpose end-to-end traceability capabilities of object flows.
The fifth mobile communications generation (5G) can lead to a substantial change in companies enabling the full capability of wireless industrial communication. 5G with its key features of providing Enhanced Mobile Broadband, Ultra-Reliable and Low-Latency Communication, and Massive Machine Type Communication will support the implementation of Industry 4.0 applications. In particular, the possibility to set-up Non-Public Networks provides the opportunity of 5G communication in factories and ensures sole access to the 5G infrastructure offering new opportunities for companies to implement innovative mobile applications. Currently there exist various concepts, ideas, and projects for 5G applications in an industrial environment. However, the global rollout of 5G systems is a continuous process based on various stages defined by the global initiative 3rd Generation Partnership Project that develops and specifies the 5G telecommunication standard. Accordingly, some services are currently still far from their final performance capability or not yet implemented. Additionally, research lacks in clarifying the general suitability of 5G regarding frequently mentioned 5G use cases. This paper aims to identify relevant 5G use cases for intralogistics and evaluates their technical requirements regarding their practical feasibility throughout the upcoming 5G specifications.
The blockchain technology represents a decentralised database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain manufacturing processes to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. This paper proposes a prototypical blockchain application that adopts an authority concept and a concept of smart non-fungible tokens. The application enables the mapping of complex products in dynamic supply chains that require the auditability of changeable assembling processes on the blockchain. Finally, the paper demonstrates the practical feasibility of the proposed application based on a prototypical implementation created on the Ethereum blockchain.
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain manufacturing processes to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges when applying these token-based approaches to dynamic manufacturing processes. As a first step, this paper investigates existing mapping approaches and exemplifies weaknesses regarding their suitability for products with changeable configurations. Secondly, a concept is proposed to overcome these weaknesses by introducing logically coupled tokens embedded into a flexible smart contract structure. Finally, a concept for a token-based architecture is introduced to map manufacturing processes of products with changeable configurations.
Die Blockchain-Technologie stellt einen vielversprechenden Ansatz für Transparenz und Resilienz in Lieferketten dar. In diesem Beitrag wird untersucht, welche Blockchain-Lösungen derzeit für die Supply-Chain zur Verfügung stehen, und die bislang umgesetzten Projekte in diesem Bereich analysiert. Die meisten der realisierten Projekte beziehen sich auf einfache Produkte und Supply-Chain-Strukturen. Der Grund ist, dass bislang Lösungen zur ganzheitlichen Abbildung von komplexen Produkten in dynamischen Supply-Chain-Strukturen gefehlt haben. Doch jetzt stehen erste vielversprechende Ansätze zur Verfügung.
Supply chains have become increasingly complex, making it difficult to ensure transparency throughout the whole supply chain. In this context, first approaches came up, adopting the immutable, decentralised, and secure characteristics of the blockchain technology to increase the transparency, security, authenticity, and auditability of assets in supply chains. This paper investigates recent publications combining the blockchain technology and supply chain management and classifies them regarding the complexity to be mapped on the blockchain. As a result, the increase of supply chain transparency is identified as the main objective of recent blockchain projects in supply chain management. Thereby, most of the recent publications deal with simple supply chains and products. The few approaches dealing with complex parts only map sub-areas of supply chains. Currently no example exists which has the aim of increasing the transparency of complex manufacturing supply chains, and which enables the mapping of complex assembly processes, an efficient auditability of all assets, and an implementation of dynamic adjustments.