Refine
Document Type
- Journal article (7)
- Conference proceeding (6)
- Book chapter (2)
Has full text
- yes (15)
Is part of the Bibliography
- yes (15)
Institute
- ESB Business School (15)
Publisher
- Elsevier (5)
- Springer (5)
- Institutionelles Repositorium der Leibniz Universität Hannover (1)
- MDPI (1)
- SSRN (1)
- Universität Hannover (1)
- de Gruyter (1)
Companies are becoming aware of the potential risks arising from sustainability aspects in supply chains. These risks can affect ecological, economic or social aspects. One important element in managing those risks is improved transparency in supply chains by means of digital transformation. Innovative technologies like blockchain technology can be used to enforce transparency. In this paper, we present a smart contract-based Supply Chain Control Solution to reduce risks. Technological capabilities of the solution will be compared to a similar technology approach and evaluated regarding their benefits and challenges within the framework of supply chain models. As a result, the proposed solution is suitable for the dynamic administration of complex supply chains.
Globalisation, shorter product life cycles, and increasing product varieties have led to complex supply chains. At the same time, there is a growing interest of customers and governments in having a greater transparency of brands, manufacturers, and producers throughout the supply chain. Due to the complex structure of collaborative manufacturing networks, the increase of supply chain transparency is a challenge for manufacturing companies. The blockchain technology offers an innovative solution to increase the transparency, security, authenticity, and auditability of products. However, there are still uncertainties when applying the blockchain technology to manufacturing scenarios and thus enable all stakeholders to trace back each component of an assembled product. This paper proposes a framework design to increase the transparency and auditability of products in collaborative manufacturing networks by adopting the blockchain technology. In this context, each component of a product is marked with a unique identification number generated by blockchain-based smart contracts. In this way, a transparent auditability of assembled products and their components can be achieved for all stakeholders, including the custome.
Die Blockchain-Technologie stellt einen vielversprechenden Ansatz für Transparenz und Resilienz in Lieferketten dar. In diesem Beitrag wird untersucht, welche Blockchain-Lösungen derzeit für die Supply-Chain zur Verfügung stehen, und die bislang umgesetzten Projekte in diesem Bereich analysiert. Die meisten der realisierten Projekte beziehen sich auf einfache Produkte und Supply-Chain-Strukturen. Der Grund ist, dass bislang Lösungen zur ganzheitlichen Abbildung von komplexen Produkten in dynamischen Supply-Chain-Strukturen gefehlt haben. Doch jetzt stehen erste vielversprechende Ansätze zur Verfügung.
Supply chains have become increasingly complex, making it difficult to ensure transparency throughout the whole supply chain. In this context, first approaches came up, adopting the immutable, decentralised, and secure characteristics of the blockchain technology to increase the transparency, security, authenticity, and auditability of assets in supply chains. This paper investigates recent publications combining the blockchain technology and supply chain management and classifies them regarding the complexity to be mapped on the blockchain. As a result, the increase of supply chain transparency is identified as the main objective of recent blockchain projects in supply chain management. Thereby, most of the recent publications deal with simple supply chains and products. The few approaches dealing with complex parts only map sub-areas of supply chains. Currently no example exists which has the aim of increasing the transparency of complex manufacturing supply chains, and which enables the mapping of complex assembly processes, an efficient auditability of all assets, and an implementation of dynamic adjustments.
Classification model of supply chain events regarding their transferability to blockchain technology
(2021)
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain supply chain events to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges. In particular, the scalability, storage capacity, and the special requirements for storage formats make it currently impossible to map all supply chain events unrestrictedly on the blockchain. As a first step, this paper identifies important supply chain events for different use cases combining blockchain technology and supply chain management. Secondly, the supply chain events are classified in terms of their expected technical properties and their relevance for the respective use case. Finally, the identified supply chain events are evaluated regarding their transferability to blockchain technology and a classification model is introduced.
Distributed ledger technologies such as the blockchain technology offer an innovative solution to increase visibility and security to reduce supply chain risks. This paper proposes a solution to increase the transparency and auditability of manufactured products in collaborative networks by adopting smart contract-based virtual identities. Compared with existing approaches, this extended smart contract-based solution offers manufacturing networks the possibility of involving privacy, content updating, and portability approaches to smart contracts. As a result, the solution is suitable for the dynamic administration of complex supply chains.
Blockchain is a technology for the secure processing and verification of data transactions based on a distributed peer-to-peer network that uses cryptographic processes, consensus algorithms, and backward-linked blocks to make transactions virtually immutable. Within supply chain management, blockchain technology offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. However, its complexity requires future employees to have comprehensive knowledge regarding the functionality of blockchain-based applications in order to be able to apply their benefits to scenarios in supply chain and production. Learning factories represent a suitable environment allowing learners to experience new technologies and to apply them to virtual and physical processes throughout value chains. This paper presents a concept to practically transfer knowledge about the technical functionality of blockchain technology to future engineers and software developers working within supply chains and production operations to sensitize them regarding the advantages of decentralized applications. First, the concept proposes methods to playfully convey immutable backward-linked blocks and the embedment of blockchain smart contracts. Subsequently, the students use this knowledge to develop blockchain-based application scenarios by means of an exemplary product in a learning factory environment. Finally, the developed solutions are implemented with the help of a prototypical decentralized application, which enables a holistic mapping of supply chain events.
The blockchain technology represents a decentralized database that stores information securely in immutable data blocks. Regarding supply chain management, these characteristics offer potentials in increasing supply chain transparency, visibility, automation, and efficiency. In this context, first token-based mapping approaches exist to transfer certain manufacturing processes to the blockchain, such as the creation or assembly of parts as well as their transfer of ownership. However, the decentralized and immutable structure of blockchain technology also creates challenges when applying these token-based approaches to dynamic manufacturing processes. As a first step, this paper investigates existing mapping approaches and exemplifies weaknesses regarding their suitability for products with changeable configurations. Secondly, a concept is proposed to overcome these weaknesses by introducing logically coupled tokens embedded into a flexible smart contract structure. Finally, a concept for a token-based architecture is introduced to map manufacturing processes of products with changeable configurations.
Recently, blockchain-based tokens have earned an important role in fields such as the art market or online gaming. First approaches exist, which adopt the potentials of blockchain tokens in supply chain management to increase transparency, visibility, automation, and disintermediation of supply chains. In context, the tokenization of assets in supply chains refers to the practice of creating virtual representations of physical assets on the blockchain. Solutions in supply chain management based on the tokenization of assets vary in terms of application objectives, token types, asset characteristics, as well as the complexities of supply chain events to be mapped on the blockchain. Currently, however, no review exists that summarizes the characteristics of blockchain-based tokens and their scope of applications. This paper provides a clear terminological distinction of existing blockchain token types and therefore distinguishes between fungible tokens, non-fungible tokens, smart non-fungible tokens, and dynamic smart non-fungible tokens. Subsequently, the token types are classified regarding their traceability, modifiability, and authorization to evaluate suitability for mapping assets in supply chains. Given the potential of blockchain in supply chain management, the results of the review serve as a foundation for a practical guide supporting the selection process of suitable token types for industrial applications.
Supply chains have evolved into dynamic, interconnected supply networks, which increases the complexity of achieving end-to-end traceability of object flows and their experienced events. With its capability of ensuring a secure, transparent, and immutable environment without relying on a trusted third party, the emerging blockchain technology shows strong potential to enable end-to-end traceability in such complex multitiered supply networks. This paper aims to overcome the limitations of existing blockchain-based traceability architectures regarding their object-related event mapping ability, which involves mapping the creation and deletion of objects, their aggregation and disaggregation, transformation, and transaction, in one holistic architecture. Therefore, this paper proposes a novel ‘blueprint-based’ token concept, which allows clients to group tokens into different types, where tokens of the same type are non-fungible. Furthermore, blueprints can include minting conditions, which, for example, are necessary when mapping assembly processes. In addition, the token concept contains logic for reflecting all conducted object-related events in an integrated token history. Finally, for validation purposes, this article implements the architecture’s components in code and proves its applicability based on the Ethereum blockchain. As a result, the proposed blockchain-based traceability architecture covers all object-related supply chain events and proves its general-purpose end-to-end traceability capabilities of object flows.