Refine
Document Type
- Journal article (18)
Language
- English (18)
Has full text
- yes (18)
Is part of the Bibliography
- yes (18)
Institute
- Life Sciences (18)
- Texoversum (1)
Publisher
- MDPI (6)
- American Chemical Society (5)
- Wiley (2)
- American Institute of Physics (1)
- EDP Sciences (1)
- Optical Society of America (1)
- Springer (1)
- The Royal Society of Chemistry (1)
Hypericin is one of the most efficient photosensitizers used in photodynamic tumor therapy (PDT). The reported treatments of this drug reach from antidepressive, antineoplastic, antitumor and antiviral activity. We show that hypericin can be optically detected down to a single molecule at ambient conditions. Hypericin can even be observed inside of a cancer cell, which implies that this drug can be directly used for advanced microscopy techniques (PALM, spt-PALM, or FLIM). Its photostability is large enough to obtain single molecule fluorescence, surface enhanced Raman spectra (SERS), fluorescence lifetime, antibunching, and blinking dynamics. Sudden spectral changes can be associated with a reorientation of the molecule on the particle surface. These properties of hypericin are very sensitive to the local environment. Comparison of DFT calculations with SERS spectra show that both the neutral and deprotonated form of hypericin can be observed on the single molecule and ensemble level.
Strong optical mode coupling between two adjacent λ/2 Fabry-Pérot microresonators consisting of three parallel silver mirrors is investigated experimentally and theoretically as a function of their detuning and coupling strength. Mode coupling can be precisely controlled by tuning the mirror spacing of one resonator with respect to the other by piezoelectric actuators. Mode splitting, anti-crossing and asymmetric modal damping are observed and theoretically discussed for the symmetric and antisymmetric supermodes of the coupled system. The spectral profile of the supermodes is obtained from the Fourier transform of the numerically calculated time evolution of the individual resonator modes, taking into account their resonance frequencies, damping and coupling constants, and is in excellent agreement with the experiments. Our microresonator design has potential applications for energy transfer between spatially separated quantum systems in micro optoelectronics and for the emerging field of polaritonic chemistry.
Glioblastoma WHO IV belongs to a group of brain tumors that are still incurable. A promising treatment approach applies photodynamic therapy (PDT) with hypericin as a photosensitizer. To generate a comprehensive understanding of the photosensitizer-tumor interactions, the first part of our study is focused on investigating the distribution and penetration behavior of hypericin in glioma cell spheroids by fluorescence microscopy. In the second part, fluorescence lifetime imaging microscopy (FLIM) was used to correlate fluorescence lifetime (FLT) changes of hypericin to environmental effects inside the spheroids. In this context, 3D tumor spheroids are an excellent model system since they consider 3D cell–cell interactions and the extracellular matrix is similar to tumors in vivo. Our analytical approach considers hypericin as probe molecule for FLIM and as photosensitizer for PDT at the same time, making it possible to directly draw conclusions of the state and location of the drug in a biological system. The knowledge of both state and location of hypericin makes a fundamental understanding of the impact of hypericin PDT in brain tumors possible. Following different incubation conditions, the hypericin distribution in peripheral and central cryosections of the spheroids were analyzed. Both fluorescence microscopy and FLIM revealed a hypericin gradient towards the spheroid core for short incubation periods or small concentrations. On the other hand, a homogeneous hypericin distribution is observed for long incubation times and high concentrations. Especially, the observed FLT change is crucial for the PDT efficiency, since the triplet yield, and hence the O2 activation, is directly proportional to the FLT. Based on the FLT increase inside spheroids, an incubation time 30 min is required to achieve most suitable conditions for an effective PDT.
Direct observation of structural heterogeneity and tautomerization of single hypericin molecules
(2021)
Tautomerization is a fundamental chemical reaction which involves the relocation of a proton in the reactants. Studying the optical properties of tautomeric species is challenging because of ensemble averaging. Many molecules, such as porphines, porphycenes, or phenanthroperylene quinones, exhibit a reorientation of the transition dipole moment (TDM) during tautomerization, which can be directly observed in single-molecule experiments. Here, we study single hypericin molecules, which is a prominent phenanthroperylene quinone showing antiviral, antidepressive, and photodynamical properties. Observing abrupt flipping of the image pattern combined with time-dependent density functional theory calculations allows drawing conclusions about the coexistence of four tautomers and their conversion path. This approach allows the unambiguous assignment of a TDM orientation to a specific tautomer and enables the determination of the chemical structure in situ. Our approach can be applied to other molecules showing TDM reorientation during tautomerization, helping to gain a deeper understanding of this important process.
Gold bipyramids (AuBPs) attract significant attention due to the large enhancement of the electric field around their sharp tips and well-defined tunability of their plasmon resonances. Excitation patterns of single AuBPs are recorded using raster-scanning confocal microscopy combined with radially and azimuthally polarized laser beams. Photoluminescence spectra (PL) and excitation patterns of the same AuBPs are acquired with three different excitation wavelengths. The isotropic excitation patterns suggest that the AuBPs are mainly excited by interband transitions with 488/530 nm radiation, while excitation patterns created with a 633 nm laser exhibit a double-lobed shape that indicates a single-dipole excitation process associated with the longitudinal plasmon resonance mode. We are able to determine the three-dimensional orientation of single AuBPs nonperturbatively by comparing experimental patterns with theoretical simulations. The asymmetric patterns show that the AuBPs are lying on the substrate with an out-of-plane tilt angle of around 10–15°.
Monitoring tautomerization of single hypericin molecules in a tunable optical λ/2 microcavity
(2022)
Hypericin tautomerization that involves the migration of the labile protons is believed to be the primary photophysical process relevant to its light-activated antiviral activity. Despite the difficulty in isolating individual tautomers, it can be directly observed in single-molecule experiments. We show that the tautomerization of single hypericin molecules in free space is observed as an abrupt flipping of the image pattern accompanied with fluorescence intensity fluctuations, which are not correlated with lifetime changes. Moreover, the study can be extended to a λ/2 Fabry–Pérot microcavity. The modification of the local photonic environment by a microcavity is well simulated with a theoretical model that shows good agreement with the experimental data. Inside a microcavity, the excited state lifetime and fluorescence intensity of single hypericin molecules are correlated, and a distinct jump of the lifetime and fluorescence intensity reveals the temporal behavior of the tautomerization with high sensitivity and high temporal resolution. The observed changes are also consistent with time-dependent density functional theory calculations. Our approach paves the way to monitor and even control reactions for a wider range of molecules at the single molecule level.
Surface-enhanced Raman spectroscopy (SERS) provides a strong enhancement to an inherently weak Raman signal, which strongly depends on the material, design, and fabrication of the substrate. Here, we present a facile method of fabricating a non-uniform SERS substrate based on an annealed thin gold (Au) film that offers multiple resonances and gap sizes within the same sample. It is not only chemically stable, but also shows reproducible trends in terms of geometry and plasmonic response. Scanning electron microscopy (SEM) reveals particle-like and island-like morphology with different gap sizes at different lateral positions of the substrate. Extinction spectra show that the plasmonic resonance of the nanoparticles/metal islands can be continuously tuned across the substrate. We observed that for the analytes 1,2-bis(4-pyridyl) ethylene (BPE) and methylene blue (MB), the maximum SERS enhancement is achieved at different lateral positions, and the shape of the extinction spectra allows for the correlation of SERS enhancement with surface morphology. Such non-uniform SERS substrates with multiple nanoparticle sizes, shapes, and interparticle distances can be used for fast screening of analytes due to the lateral variation of the resonances within the same sample.
Hypericin has large potential in modern medicine and exhibits fascinating structural dynamics, such as multiple conformations and tautomerization. However, it is difficult to study individual conformers/tautomers, as they cannot be isolated due to the similarity of their chemical and physical properties. An approach to overcome this difficulty is to combine single molecule experiments with theoretical studies. Time-dependent density functional theory (TD-DFT) calculations reveal that tautomerization of hypericin occurs via a two-step proton transfer with an energy barrier of 1.63 eV, whereas a direct single-step pathway has a large activation energy barrier of 2.42 eV. Tautomerization in hypericin is accompanied by reorientation of the transition dipole moment, which can be directly observed by fluorescence intensity fluctuations. Quantitative tautomerization residence times can be obtained from the autocorrelation of the temporal emission behavior revealing that hypericin stays in the same tautomeric state for several seconds, which can be influenced by the embedding matrix. Furthermore, replacing hydrogen with deuterium further proves that the underlying process is based on tunneling of a proton. In addition, the tautomerization rate can be influenced by a λ/2 Fabry–Pérot microcavity, where the occupation of Raman active vibrations can alter the tunneling rate.
Rapid detection of cleanliness on direct bonded copper substrate by using UV hyperspectral imaging
(2024)
In the manufacturing process of electrical devices, ensuring the cleanliness of technical surfaces, such as direct bonded copper substrates, is crucial. An in-line monitoring system for quality checking must provide sufficiently resolved lateral data in a short time. UV hyperspectral imaging is a promising in-line method for rapid, contactless, and large-scale detection of contamination; thus, UV hyperspectral imaging (225–400 nm) was utilized to characterize the cleanliness of direct bonded copper in a non-destructive way. In total, 11 levels of cleanliness were prepared, and a total of 44 samples were measured to develop multivariate models for characterizing and predicting the cleanliness levels. The setup included a pushbroom imager, a deuterium lamp, and a conveyor belt for laterally resolved measurements of copper surfaces. A principal component analysis (PCA) model effectively differentiated among the sample types based on the first two principal components with approximately 100.0% explained variance. A partial least squares regression (PLS-R) model to determine the optimal sonication time showed reliable performance, with R 2 cv = 0.928 and RMSECV = 0.849. This model was able to predict the cleanliness of each pixel in a testing sample set, exemplifying a step in the manufacturing process of direct bonded copper substrates. Combined with multivariate data modeling, the in-line UV prototype system demonstrates a significant potential for further advancement towards its application in real-world, large-scale processes.