Refine
Document Type
- Journal article (8)
- Conference proceeding (4)
Language
- English (12)
Is part of the Bibliography
- yes (12)
Institute
- Informatik (12)
Publisher
- Springer (6)
- De Gruyter (4)
- IEEE (1)
Purpose
Computerized medical imaging processing assists neurosurgeons to localize tumours precisely. It plays a key role in recent image-guided neurosurgery. Hence, we developed a new open-source toolkit, namely Slicer-DeepSeg, for efficient and automatic brain tumour segmentation based on deep learning methodologies for aiding clinical brain research.
Methods
Our developed toolkit consists of three main components. First, Slicer-DeepSeg extends the 3D Slicer application and thus provides support for multiple data input/ output data formats and 3D visualization libraries. Second, Slicer core modules offer powerful image processing and analysis utilities. Third, the Slicer-DeepSeg extension provides a customized GUI for brain tumour segmentation using deep learning-based methods.
Results
The developed Slicer-DeepSeg was validated using a public dataset of high-grade glioma patients. The results showed that our proposed platform’s performance considerably outperforms other 3D Slicer cloud-based approaches.
Conclusions
Developed Slicer-DeepSeg allows the development of novel AI-assisted medical applications in neurosurgery. Moreover, it can enhance the outcomes of computer-aided diagnosis of brain tumours. Open-source Slicer-DeepSeg is available at github.com/razeineldin/Slicer-DeepSeg.
Accurate and safe neurosurgical intervention can be affected by intra-operative tissue deformation, known as brain-shift. In this study, we propose an automatic, fast, and accurate deformable method, called iRegNet, for registering pre-operative magnetic resonance images to intra-operative ultrasound volumes to compensate for brain-shift. iRegNet is a robust end-to-end deep learning approach for the non-linear registration of MRI-iUS images in the context of image-guided neurosurgery. Pre-operative MRI (as moving image) and iUS (as fixed image) are first appended to our convolutional neural network, after which a non-rigid transformation field is estimated. The MRI image is then transformed using the output displacement field to the iUS coordinate system. Extensive experiments have been conducted on two multi-location databases, which are the BITE and the RESECT. Quantitatively, iRegNet reduced the mean landmark errors from pre-registration value of (4.18 ± 1.84 and 5.35 ± 4.19 mm) to the lowest value of (1.47 ± 0.61 and 0.84 ± 0.16 mm) for the BITE and RESECT datasets, respectively. Additional qualitative validation of this study was conducted by two expert neurosurgeons through overlaying MRI-iUS pairs before and after the deformable registration. Experimental findings show that our proposed iRegNet is fast and achieves state-of-the-art accuracies outperforming state-of-the-art approaches. Furthermore, the proposed iRegNet can deliver competitive results, even in the case of non-trained images as proof of its generality and can therefore be valuable in intra-operative neurosurgical guidance.
Intraoperative brain deformation, so called brain shift, affects the applicability of preoperative magnetic resonance imaging (MRI) data to assist the procedures of intraoperative ultrasound (iUS) guidance during neurosurgery. This paper proposes a deep learning-based approach for fast and accurate deformable registration of preoperative MRI to iUS images to correct brain shift. Based on the architecture of 3D convolutional neural networks, the proposed deep MRI-iUS registration method has been successfully tested and evaluated on the retrospective evaluation of cerebral tumors (RESECT) dataset. This study showed that our proposed method outperforms other registration methods in previous studies with an average mean squared error (MSE) of 85. Moreover, this method can register three 3D MRI-US pair in less than a second, improving the expected outcomes of brain surgery.
Purpose
Artificial intelligence (AI), in particular deep learning (DL), has achieved remarkable results for medical image analysis in several applications. Yet the lack of human-like explanations of such systems is considered the principal restriction before utilizing these methods in clinical practice (Yang, Ye, & Xia, 2022).
Methods
Explainable Artificial Intelligence (XAI) provides a human-explainable and interpretable description of the “black-box” nature of DL (Gulum, Trombley, & Kantardzic, 2021). An effective XAI diagnosis generator, namely NeuroXAI (refer to Fig. 1), has been developed to extract 3D explanations from convolutional neural networks (CNN) models of brain gliomas (Zeineldin et al., 2022). By providing visual justification maps, NeuroXAI can help make DL models transparent and thus increase the trust of medical experts.
Results
NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e. image classification and segmentation using magnetic resonance imaging (MRI). Visual attention maps of multiple XAI methods have been generated and compared for both applications, which could help to provide transparency about the performance of DL systems.
Conclusion
NeuroXAI helps to understand the prediction process of 3D CNN networks for brain glioma using human-understandable explanations. Results revealed that the investigated DL models behave in a logical human-like manner and can improve the analytical process of the MRI images systematically. Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist medical professionals in the detection and diagnosis of brain tumors. NeuroXAI code is publicly accessible at https://github.com/razeineldin/NeuroXAI
Intraoperative imaging can assist neurosurgeons to define brain tumours and other surrounding brain structures. Interventional ultrasound (iUS) is a convenient modality with fast scan times. However, iUS data may suffer from noise and artefacts which limit their interpretation during brain surgery. In this work, we use two deep learning networks, namely UNet and TransUNet, to make automatic and accurate segmentation of the brain tumour in iUS data. Experiments were conducted on a dataset of 27 iUS volumes. The outcomes show that using a transformer with UNet is advantageous providing an efficient segmentation modelling long-range dependencies between each iUS image. In particular, the enhanced TransUNet was able to predict cavity segmentation in iUS data with an inference rate of more than 125 FPS. These promising results suggest that deep learning networks can be successfully deployed to assist neurosurgeons in the operating room.
Purpose
Artificial intelligence (AI), in particular deep neural networks, has achieved remarkable results for medical image analysis in several applications. Yet the lack of explainability of deep neural models is considered the principal restriction before applying these methods in clinical practice.
Methods
In this study, we propose a NeuroXAI framework for explainable AI of deep learning networks to increase the trust of medical experts. NeuroXAI implements seven state-of-the-art explanation methods providing visualization maps to help make deep learning models transparent.
Results
NeuroXAI has been applied to two applications of the most widely investigated problems in brain imaging analysis, i.e., image classification and segmentation using magnetic resonance (MR) modality. Visual attention maps of multiple XAI methods have been generated and compared for both applications. Another experiment demonstrated that NeuroXAI can provide information flow visualization on internal layers of a segmentation CNN.
Conclusion
Due to its open architecture, ease of implementation, and scalability to new XAI methods, NeuroXAI could be utilized to assist radiologists and medical professionals in the detection and diagnosis of brain tumors in the clinical routine of cancer patients. The code of NeuroXAI is publicly accessible at https://github.com/razeineldin/NeuroXAI.
Automatic segmentation is essential for the brain tumor diagnosis, disease prognosis, and follow-up therapy of patients with gliomas. Still, accurate detection of gliomas and their sub-regions in multimodal MRI is very challenging due to the variety of scanners and imaging protocols. Over the last years, the BraTS Challenge has provided a large number of multi-institutional MRI scans as a benchmark for glioma segmentation algorithms. This paper describes our contribution to the BraTS 2022 Continuous Evaluation challenge. We propose a new ensemble of multiple deep learning frameworks namely, DeepSeg, nnU-Net, and DeepSCAN for automatic glioma boundaries detection in pre-operative MRI. It is worth noting that our ensemble models took first place in the final evaluation on the BraTS testing dataset with Dice scores of 0.9294, 0.8788, and 0.8803, and Hausdorf distance of 5.23, 13.54, and 12.05, for the whole tumor, tumor core, and enhancing tumor, respectively. Furthermore, the proposed ensemble method ranked first in the final ranking on another unseen test dataset, namely Sub-Saharan Africa dataset, achieving mean Dice scores of 0.9737, 0.9593, and 0.9022, and HD95 of 2.66, 1.72, 3.32 for the whole tumor, tumor core, and enhancing tumor, respectively.
Glioblastomas are the most aggressive fast-growing primary brain cancer which originate in the glial cells of the brain. Accurate identification of the malignant brain tumor and its sub-regions is still one of the most challenging problems in medical image segmentation. The Brain Tumor Segmentation Challenge (BraTS) has been a popular benchmark for automatic brain glioblastomas segmentation algorithms since its initiation. In this year, BraTS 2021 challenge provides the largest multi-parametric (mpMRI) dataset of 2,000 pre-operative patients. In this paper, we propose a new aggregation of two deep learning frameworksnamely, DeepSeg and nnU-Net for automatic glioblastoma recognition in pre-operative mpMRI. Our ensemble method obtains Dice similarity scores of 92.00, 87.33, and 84.10 and Hausdorff Distances of 3.81, 8.91, and 16.02 for the enhancing tumor, tumor core, and whole tumor regions, respectively, on the BraTS 2021 validation set, ranking us among the top ten teams. These experimental findings provide evidence that it can be readily applied clinically and thereby aiding in the brain cancer prognosis, therapy planning, and therapy response monitoring. A docker image for reproducing our segmentation results is available online at (https://hub.docker.com/r/razeineldin/deepseg21).
A hybrid deep registration of MR scans to interventional ultrasound for neurosurgical guidance
(2021)
Despite the recent advances in image-guided neurosurgery, reliable and accurate estimation of the brain shift still remains one of the key challenges. In this paper, we propose an automated multimodal deformable registration method using hybrid learning-based and classical approaches to improve neurosurgical procedures. Initially, the moving and fixed images are aligned using classical affine transformation (MINC toolkit), and then the result is provided to the convolutional neural network, which predicts the deformation field using backpropagation. Subsequently, the moving image is transformed using the resultant deformation into a moved image. Our model was evaluated on two publicly available datasets: the retrospective evaluation of cerebral tumors (RESECT) and brain images of tumors for evaluation (BITE). The mean target registration errors have been reduced from 5.35 ± 4.29 to 0.99 ± 0.22 mm in the RESECT and from 4.18 ± 1.91 to 1.68 ± 0.65 mm in the BITE. Experimental results showed that our method improved the state-of-the-art in terms of both accuracy and runtime speed (170 ms on average). Hence, the proposed method provides a fast runtime for 3D MRI to intra-operative US pair in a GPU-based implementation, which shows a promise for its applicability in assisting the neurosurgical procedures compensating for brain shift.
Recent advances in artificial intelligence have enabled promising applications in neurosurgery that can enhance patient outcomes and minimize risks. This paper presents a novel system that utilizes AI to aid neurosurgeons in precisely identifying and localizing brain tumors. The system was trained on a dataset of brain MRI scans and utilized deep learning algorithms for segmentation and classification. Evaluation of the system on a separate set of brain MRI scans demonstrated an average Dice similarity coefficient of 0.87. The system was also evaluated through a user experience test involving the Department of Neurosurgery at the University Hospital Ulm, with results showing significant improvements in accuracy, efficiency, and reduced cognitive load and stress levels. Additionally, the system has demonstrated adaptability to various surgical scenarios and provides personalized guidance to users. These findings indicate the potential for AI to enhance the quality of neurosurgical interventions and improve patient outcomes. Future work will explore integrating this system with robotic surgical tools for minimally invasive surgeries.