Refine
Document Type
- Journal article (25)
- Patent / Standard / Guidelines (3)
- Book chapter (2)
- Conference proceeding (1)
Is part of the Bibliography
- yes (31)
Institute
- Life Sciences (31)
Publisher
- De Gruyter (7)
- Elsevier (7)
- MDPI (5)
- Wiley (4)
- Hanser (1)
- Hindawi (1)
- JoVE (1)
- Springer (1)
- University of Technology and Economics, Department of Polymer Engineering (1)
Die kontinuierliche Erfassung von Qualitätsparametern ist eine zunehmende Anforderung in der Polymerextrusion. Die optische Spektroskopie kann diese Anforderung erfüllen, da sie neben der Farbe weitere Parameter wie beispielsweise chemische Eigenschaften, Trübungsgrad oder Partikelgröße erfasst. Dabei werden für Inline-Messungen im Extruder optische Sonden eingesetzt. Im laufenden Betrieb bilden sich Ablagerungen auf den Sondenfenstern. Dieser Beitrag präsentiert ein neues Cleaning in Place Konzept, mit dessen Hilfe die Fenster auch während der Produktion ohne Unterbrechung gereinigt werden können. Auch die Kalibrierung der Messtechnik ist dabei möglich. Das verhindert Rüstzeiten und sichert eine kontinuierliche Inline-Messung.
Here, we report the continuous peroxide-initiated grafting of vinyltrimethoxysilane (VTMS) onto a standard polyolefin by means of reactive extrusion to produce a functionalized liquid ethylene propylene copolymer (EPM). The effects of the process parameters governing the grafting reaction and their synergistic interactions are identified, quantified and used in a mathematical model of the extrusion process. As process variables the VTMS and peroxide concentrations and the extruder temperature setting were systematically studied for their influence on the grafting and the relative grafting degree using a face-centered central composite design (FCD). The grafting degree was quantified by 1H NMR spectroscopy. Response surface methodology (RSM) was used to calculate the most efficient grafting process in terms of chemical usage and graft yield. With the defined processing window, it was possible to make precise predictions about the grafting degree with at the same time highest possible relative degree of grafting.
This article contains data on the synthesis and mechanical characterization of polysiloxane-based urea-elastomers (PSUs) and is related to the research article entitled “Influence of PDMS molecular weight on transparency and mechanical properties of soft polysiloxane-urea-elastomers for intraocular lens application” (Riehle et al., 2018) [1]. These elastomers were prepared by a two-step polyaddition using the aliphatic diisocyanate 4,4′-Methylenbis(cyclohexylisocyanate) (H12MDI), a siloxane-based chain extender 1,3-Bis(3-aminopropyl)-1,1,3,3-tetramethyldisiloxane (APTMDS) and amino-terminated polydimethylsiloxanes (PDMS) or polydimethyl-methyl-phenyl-siloxane-copolymers (PDMS-Me,Ph), respectively. (More details about the synthesis procedure and the reaction scheme can be found in the related research article (Riehle et al., 2018) [1]).
Amino-terminated polydimethylsiloxanes with varying molecular weights and PDMS-Me,Ph-copolymers were prepared prior by a base-catalyzed ring-chain equilibration of a cyclic siloxane and the endblocker APTMDS. This DiB article contains a procedure for the synthesis of the base catalyst tetramethylammonium-3-aminopropyl-dimethylsilanolate and a generic synthesis procedure for the preparation of a PDMS having a targeted number average molecular weight of 3000 g mol−1. Molecular weights and the amount of methyl-phenyl-siloxane within the polysiloxane-copolymers were determined by 1H NMR and 29Si NMR spectroscopy. The corresponding NMR spectra and data are described in this article.
Additionally, this DiB article contains processed data on in line and off line FTIR-ATR spectroscopy, which was used to follow the reaction progress of the polyaddition by showing the conversion of the diisocyanate. All relevant IR band assignments of a polydimethylsiloxane-urea spectrum are described in this article.
Finally, data on the tensile properties and the mechanical hysteresis-behaviour at 100% elongation of PDMS-based polyurea-elastomers are shown in dependence to the PDMS molecular weight.
Soft thermoplastic polysiloxane-urea-elastomers (PSUs) were prepared for the application as a biomaterial to replace the human natural lens after cataract surgery. PSUs were synthesized from amino-terminated polydimethylsiloxanes (PDMS), 4,4′-Methylenebis(cyclohexylisocyanate) (H12MDI) and 1,3–Bis(3-aminopropyl)-1,1,3,3–tetramethyldisiloxane (APTMDS) by a two-step polyaddition route. Such a material has to be highly transparent and must exhibit a low Young’s Modulus and excellent dimensional stability. Polydimethylsiloxanes in the range of 3000–33,000 g·mol−1 were therefore prepared by ring-chain-equilibration of octamethylcyclotetrasiloxane (D4) and APTMDS in order to study the influence of the soft segment molecular weight on the mechanical properties and the transparency of the PSU-elastomers. 2,4,6,8-Tetramethyl-2,4,6,8-tetraphenylcyclotetrasiloxane (D4Me,Ph) was co-polymerized with D4 in order to adjust the refractive index of the polydimethyl-methyl-phenyl-siloxane-copolymers to a value equivalent to a young human natural lens. Very elastic PSUs with Elongation at Break values higher than 700% were prepared. PSU-elastomers, synthesized from PDMS of molecular weights up to 18,000 g·mol−1, showed transmittance values of over 90% within the visible spectrum range. The soft segment refractive index was increased through the incorporation of 14 mol % of methyl-phenyl-siloxane from 1.4011 to 1.4346 (37 °C). Young’s Moduli of PSU-elastomers were around 1 MPa and lower at PDMS molecular weights up to 15,000 g·mol−1. 10-cycle hysteresis measurements were applied to evaluate the mechanical stability of the PSUs at repeated stress. Hysteresis values at 100% strain decreased from 32 to 2% (10th cycle) with increasing PDMS molecular weight. Furthermore, hysteresis at 5% strain was only detected in PSU-elastomers with low PDMS molecular weights. Finally, preliminary results of in vitro cytotoxicity tests on a PSU-elastomer showed no toxic effects on HaCaT-cells.
The effect of hard segment content and diisocyanate structure on the transparency and mechanical properties of soft poly(dimethylsiloxane) (PDMS)-based urea elastomers (PSUs) was investigated. A series of PSU elastomers were synthesized from an aminopropyl-terminated PDMS (M¯n: 16,300 g·mol−1), which was prepared by ring chain equilibration of the monomers octamethylcyclotetrasiloxane (D4) and 1,3-bis(3-aminopropyl)-tetramethyldisiloxane (APTMDS). The hard segments (HSs) comprised diisocyanates of different symmetry, i.e., 4,4′-methylenebis(cyclohexyl isocyanate) (H12MDI), 4,4′-methylenebis(phenyl isocyanate) (MDI), isophorone diisocyanate (IPDI), and trans-1,4-cyclohexane diisocyanate (CHDI). The HS contents of the PSU elastomers based on H12MDI and IPDI were systematically varied between 5% and 20% by increasing the ratio of the diisocyanate and the chain extender APTMDS. PSU copolymers of very low urea HS contents (1.0–1.6%) were prepared without the chain extender. All PSU elastomers and copolymers exhibited good elastomeric properties and displayed elongation at break values between 600% and 1100%. The PSUs with HS contents below 10% were transparent and became increasingly translucent at HS contents of 15% and higher. The Young’s modulus (YM) and ultimate tensile strength values of the elastomers increased linearly with increasing HS content. The YM values differed significantly among the PSU copolymers depending on the symmetry of the diisocyanate. The softest elastomer was that based on the asymmetric IPDI. The elastomers synthesized from H12MDI and MDI both exhibited an intermediate YM, while the stiffest elastomer, i.e., that comprising the symmetric CHDI, had a YM three-times higher than that prepared with IPDI. The PSUs were subjected to load–unload cycles at 100% and 300% strain to study the influence of HS morphology on 10-cycle hysteresis behavior. At 100% strain, the first-cycle hysteresis values of the IPDI- and H12MDI-based elastomers first decreased to a minimum of approximately 9–10% at an HS content of 10% and increased again to 22–28% at an HS content of 20%. A similar, though less pronounced, trend was observed at 300% strain. First-cycle hysteresis among the PSU copolymers at 100% strain was lowest in the case of CHDI and highest in the IPDI-based elastomer. However, this effect was reversed at 300% strain, with CHDI displaying the highest hysteresis in the first cycle. In vitro cytotoxicity tests performed using HaCaT cells did not show any adverse effects, revealing their potential suitability for biomedical applications.
Vitamin E (VitE) additives are important in treating osteoarthritis inclusive cartilage regeneration due to their antioxidant and anti-inflammatory properties. The present research study focuses on the ability of biological antioxidant VitE (alpha-tocopherol isoform) to reduce or minimize oxidative degradation of soft implantable polyurethane (PU) elastomers after extended periods of time (5 months) in vitro. The effect of the oxidation storage media on the morphology of the segmented PUs was evaluated by mechanical softening, crystallization and melting behavior of both soft and hard segments (SS, HS) using dynamic mechanical analysis (DMA). Bulk mechanical properties of the potential implant materials during ageing were predicted from comprehensive mechanical testing of the biomaterials under tension and compression cyclic loads. 5-months in vitro data suggest that the prepared siloxane-poly(carbonate urethane) formulations have sufficient resistance against degradation to be suitable materials for chondral long term bio-stable implants. Most importantly, the positive effect of incorporating VitE (0.5 or 1.0% w/w) as bio-antioxidant and lubricant on the bio-stability was observed for all PU types. VitE-additives protected the surface layer from erosion and cracking during chemical oxidation in vitro as well as from thermal oxidation during extrusion re-processing.
A series of novel biomedical TPCUs with different percentages of hard segment and a silicone component in the soft segment were synthesized in a multi stage one-pot method. The kinetic profiles of the urethane formation in TPCU-based copolymer systems were monitored by rheological, in line FTIR spectroscopic (React IR) and real-time calorimetric (RC1) methods. This process-analytically monitored multi step synthesis was successfully used to optimize the production of medical-grade TPCU elastomers on preparative scale (in lots of several kg) with controlled molecular structure and mechanical properties. Various surface and bulk analytical methods as well as systematic studies of the mechanic response of the elastomer end-products towards compression and tensile loading were used to estimate the bio-stability of the prepared TPCUs in vitro after 3 months. The tests suggested that high bio-stability of all polyurethane formulations using accelerating in vitro test can be attributed to the synthetic design as well as to the specific techniques used for specimen preparation, namely: (1) the annealing for reducing residual polymer surface stress and preventing IES, (2) stabilization of the morphology by long time storage of the specimens after processing before being immersed in the test liquids, (3) purification by extraction to remove the shot chain oligomers which are the most susceptible to degradation. All mechanical tests were performed on cylindrical and circular disc specimens for modelling the thickness of the meniscus implants under application-relevant stress conditions.
The chemical synthesis of polysiloxanes from monomeric starting materials involves a series of hydrolysis, condensation and modification reactions with complex monomeric and oligomeric reaction mixtures. Real-time monitoring and precise process control of the synthesis process is of great importance to ensure reproducible intermediates and products and can readily be performed by optical spectroscopy. In chemical reactions involving rapid and simultaneous functional group transformations and complex reaction mixtures, however, the spectroscopic signals are often ambiguous due to overlapping bands, shifting peaks and changing baselines. The univariate analysis of individual absorbance signals is hence often only of limited use. In contrast, batch modelling based on the multivariate analysis of the time course of principal components (PCs) derived from the reaction spectra provides a more efficient tool for real time monitoring. In batch modelling, not only single absorbance bands are used but information over a broad range of wavelengths is extracted from the evolving spectral fingerprints and used for analysis. Thereby, process control can be based on numerous chemical and morphological changes taking place during synthesis. “Bad” (or abnormal) batches can quickly be distinguished from “normal” ones by comparing the respective reaction trajectories in real time. In this work, FTIR spectroscopy was combined with multivariate data analysis for the in-line process characterization and batch modelling of polysiloxane formation. The synthesis was conducted under different starting conditions using various reactant concentrations. The complex spectral information was evaluated using chemometrics (principal component analysis, PCA). Specific spectral features at different stages of the reaction were assigned to the corresponding reaction steps. Reaction trajectories were derived based on batch modelling using a wide range of wavelengths. Subsequently, complexity was reduced again to the most relevant absorbance signals in order to derive a concept for a low-cost process spectroscopic set-up which could be used for real-time process monitoring and reaction control.
Thermoplastic polymers like ethylene-octene copolymer (EOC) may be grafted with silanes via reactive extrusion to enable subsequent crosslinking for advanced biomaterials manufacture. However, this reactive extrusion process is difficult to control and it is still challenging to reproducibly arrive at well-defined products. Moreover, high grafting degrees require a considerable excess of grafting reagent. A large proportion of the silane passes through the process without reacting and needs to be removed at great expense by subsequent purification. This results in unnecessarily high consumption of chemicals and a rather resource-inefficient process. It is thus desired to be able to define desired grafting degrees with optimum grafting efficiency by means of suitable process control. In this study, the continuous grafting of vinyltrimethoxysilane (VTMS) on ethylene-octene copolymer (EOC) via reactive extrusion was investigated. Successful grafting was verified and quantified by 1H-NMR spectroscopy. The effects of five process parameters and their synergistic interactions on grafting degree and grafting efficiency were determined using a face-centered experimental design (FCD). Response surface methodology (RSM) was applied to derive a causal process model and define process windows yielding arbitrary grafting degrees between <2 and >5% at a minimum waste of grafting agent. It was found that the reactive extrusion process was strongly influenced by several second-order interaction effects making this process difficult to control. Grafting efficiencies between 75 and 80% can be realized as long as grafting degrees <2% are admitted.