Refine
Document Type
- Journal article (3)
- Conference proceeding (1)
- Doctoral Thesis (1)
Language
- English (5)
Is part of the Bibliography
- yes (5)
Institute
- Life Sciences (5)
Publisher
Powder coating of engineered wood panels such as medium density fibreboards (MDF) is gaining industrial interest due to ecological and economic advantages of powder coating technology. For transferring powder coating technology to temperature-sensitive substrates like MDF, a thorough understanding of the melting, flowing and curing behaviour of the used low-bake resins is required. In the present study, thermo-analysis in combination with iso-conversional kinetic data analysis as well as rheometry is applied to characterise the properties of an epoxy-based powder coating. Neat resin and cured powder coating films are examined in order to define an ideal production window within which the resin is preferably applied and processed to yield satisfactory surface performance on the one hand and without exposing the carrier MDF too high a temperature load on the other hand to prevent the panel from deteriorating in mechanical strength. In order to produce powder coated films of high surface gloss – a feature that has not yet successfully been realized on MDF with powder coatings – a new curing technology, in-mould surface finishing, has been applied.
The powder coating of veneered particle boards by the sequence electrostatic powder application -powder curing via hot pressing is studied in order to create high gloss surfaces. To obtain an appealingaspect, veneer Sheets were glued by heat and pressure on top of particle boards and the resulting surfaceswere used as carrier substrates for powder coat finishing. Prior to the powder coating, the veneeredparticle board surfaces were pre-treated by sanding to obtain good uniformity and the boards werestored in a climate chamber at controlled temperature and humidity conditions to adjust an appropriate electrical surface resistance. Characterization of surface texture was done by 3D microscopy. The surfaceelectrical resistance was measured for the six veneers before and after their application on the particleboard surface. A transparent powder top-coat was applied electrostatically onto the veneered particleboard surface. Curing of the powder was done using a heated press at 130◦C for 8 min and a smooth, glossy coating was obtained on the veneered surfaces. By applying different amounts of powder thecoating thickness could be varied and the optimum amount of powder was determined for each veneer type.
In the powder coating of veneered particle boards the highly reactive hybrid epoxy/polyester powder transparent Drylac 530 Series from TIGER Coatings GmbH & Co. KG, Wels, Austria was used. Curing is accelerated by a mixture of catalysts reaching curing times of 3 min at 150 °C or 5 min at 135 °C which allows for energy and time savings making Drylac Series 530 powder suitable for the coating of temperaturesensitive substrates such as MDF and wood.
Here, we report the mechanical and water sorption properties of a green composite based on Typha latifolia fibres. The composite was prepared either completely binder-less or bonded with 10% (w/w) of a bio-based resin which was a mixture of an epoxidized linseed oil and a tall-oil based polyamide. The flexural modulus of elasticity, the flexural strength and the water absorption of hot pressed Typha panels were measured and the influence of pressing time and panel density on these properties was investigated. The cure kinetics of the biobased resin was analyzed by differential scanning calorimetry (DSC) in combination with the iso-conversional kinetic analysis method of Vyazovkin to derive the curing conditions required for achieving completely cured resin. For the binderless Typha panels the best technological properties were achieved for panels with high density. By adding 10% of the binder resin the flexural strength and especially the water absorption were improved significantly.
Within the scope of the present cumulative doctoral thesis six scientific papers were published which illustrates that modern reaction model-free (=isoconversional) kinetic analysis (ICKA) methods represents a universal and effective tool for the controlled processing of thermosetting materials. In order to demonstrate the universal applicability of ICKA methods, the thermal cure of different thermosetting materials having a very broad range of chemical composition (melamine-formaldehyde resins, epoxy resins, polyester-epoxy resins, and acrylate/epoxy resins) were analyzed and mathematically modelled. Some of the materials were based on renewable resources (an epoxy resin was made from hempseed oil; linseed oil was modified into an acrylate/epoxy resin). With the aid of ICKA methods not only single-step but also complex multi-step reactions were modelled precisely. The analyzed thermosetting materials were combined with wood, wood-based products, paper, and plant fibers which are processed to various final products. Some of the thermosetting materials were applied as coating (in form of impregnated décor papers or powder and wet coatings respectively) on wood substrates and the epoxy resin from hempseed oil was mixed with plant fibers and processed into bio-based composites for lightweight applications. From the final products mechanical, thermal, and surface properties were determined. The activation energy as function of cure conversion derived from ICKA methods was utilized to predict accurately the thermal curing over the course of time for arbitrary cure conditions. Furthermore the cure models were used to establish correlations between the cross-linking during processing into products and the properties of the final products. Therewith it was possible to derive the process time and temperature that guarantee optimal cross-linking as well as optimal product properties