Refine
Year of publication
- 2018 (2)
Document Type
Language
- English (2)
Has full text
- yes (2)
Is part of the Bibliography
- yes (2)
Institute
- Informatik (2)
Publisher
Lots of movies are produced every year, too many to watch all of them and in particular, to get an overview about the evolution of typical movie genres and actors playing in them. Moreover, it is a challenging problem to detect correlations among the movies and the actors in those movies, in particular, if we are interested in time-varying data patterns like trends, countertrends, or anomalies and outliers. Those correlations are specifically interesting if they can be inspected on different levels of granularity, e.g., temporal, but also hierarchical in form of country- or continent-based correlations. In this paper we describe the IMDb Explorer, a webbased visualization tool that consists of two major views denoted by the movie cosmos and the career lines. Both views are linked and interactively manipulable while a list of user-defined metrics are explorable. We illustrate the usefulness of the visualization tool by applying it to the entire movie database provided by IMDb.
The basic idea behind a wearable robotic grasp assistancesystem is to support people that suffer from severe motor impairments in daily activities. Such a system needs to act mostly autonomously and according to the user’s intent. Vision-based hand pose estimation could be an integral part of a larger control and assistance framework. In this paper we evaluate the performance of egocentric monocular hand pose estimation for a robot-controlled hand exoskeleton in a simulation. For hand pose estimation we adopt a Convolutional Neural Network (CNN). We train and evaluate this network with computer graphics, created by our own data generator. In order to guide further design decisions we focus in our experiments on two egocentric camera viewpoints tested on synthetic data with the help of a 3D-scanned hand model, with and without an exoskeleton attached to it.We observe that hand pose estimation with a wrist-mounted camera performs more accurate than with a head-mounted camera in the context of our simulation. Further, a grasp assistance system attached to the hand alters visual appearance and can improve hand pose estimation. Our experiment provides useful insights for the integration of sensors into a context sensitive analysis framework for intelligent assistance.