Refine
Document Type
- Journal article (2)
- Conference proceeding (2)
Has full text
- yes (4)
Is part of the Bibliography
- yes (4)
Institute
- Informatik (4)
This paper presents a generic method to enhance performance and incorporate temporal information for cardiorespiratory-based sleep stage classification with a limited feature set and limited data. The classification algorithm relies on random forests and a feature set extracted from long-time home monitoring for sleep analysis. Employing temporal feature stacking, the system could be significantly improved in terms of Cohen’s κ and accuracy. The detection performance could be improved for three classes of sleep stages (Wake, REM, Non-REM sleep), four classes (Wake, Non-REM-Light sleep, Non-REM Deep sleep, REM sleep), and five classes (Wake, N1, N2, N3/4, REM sleep) from a κ of 0.44 to 0.58, 0.33 to 0.51, and 0.28 to 0.44 respectively by stacking features before and after the epoch to be classified. Further analysis was done for the optimal length and combination method for this stacking approach. Overall, three methods and a variable duration between 30 s and 30 min have been analyzed. Overnight recordings of 36 healthy subjects from the Interdisciplinary Center for Sleep Medicine at Charité-Universitätsmedizin Berlin and Leave-One-Out-Cross-Validation on a patient-level have been used to validate the method.
Fragestellung: Das klinische Standardverfahren und Referenz der Schlafmessung und der Klassifizierung der einzelnen Schlafstadien ist die Polysomnographie (PSG). Alternative Ansätze zu diesem aufwändigen Verfahren könnten einige Vorteile bieten, wenn die Messungen auf eine komfortablere Weise durchgeführt werden. Das Hauptziel dieser Forschung Studie ist es, einen Algorithmus für die automatische Klassifizierung von Schlafstadien zu entwickeln, der ausschließlich Bewegungs- und Atmungssignale verwendet [1].
Patienten und Methoden: Nach der Analyse der aktuellen Forschungsarbeiten haben wir multinomiale logistische Regression als Grundlage für den Ansatz gewählt [2]. Um die Genauigkeit der Auswertung zu erhöhen, wurden vier Features entwickelt, die aus Bewegungs- und Atemsignalen abgeleitet wurden. Für die Auswertung wurden die nächtlichen Aufzeichnungen von 35 Personen verwendet, die von der Charité-Universitätsmedizin Berlin zur Verfügung gestellt wurden. Das Durchschnittsalter der Teilnehmer betrug 38,6 +/– 14,5 Jahre und der BMI lag bei durchschnittlich 24,4 +/– 4,9 kg/m2. Da der Algorithmus mit drei Stadien arbeitet, wurden die Stadien N1, N2 und N3 zum NREM-Stadium zusammengeführt. Der verfügbare Datensatz wurde strikt aufgeteilt: in einen Trainingsdatensatz von etwa 100 h und in einen Testdatensatz mit etwa 160 h nächtlicher Aufzeichnungen. Beide Datensätze wiesen ein ähnliches Verhältnis zwischen Männern und Frauen auf, und der durchschnittliche BMI wies keine signifikante Abweichung auf.
Ergebnisse: Der Algorithmus wurde implementiert und lieferte erfolgreiche Ergebnisse: die Genauigkeit der Erkennung von Wach-/NREM-/REM-Phasen liegt bei 73 %, mit einem Cohen’s Kappa von 0,44 für die analysierten 19.324 Schlafepochen von jeweils 30 s. Die beobachtete gewisse Überschätzung der NREM-Phase lässt sich teilweise durch ihre Prävalenz in einem typischen Schlafmuster erklären. Selbst die Verwendung eines ausbalancierten Trainingsdatensatzes konnte dieses Problem nicht vollständig lösen.
Schlussfolgerungen: Die erreichten Ergebnisse haben die Tauglichkeit des Ansatzes prinzipiell bestätigt. Dieser hat den Vorteil, dass nur Bewegungs- und Atemsignale verwendet werden, die mit weniger Aufwand und komfortabler für Benutzer aufgezeichnet werden können als z. B. Herz- oder EEG-Signale. Daher stellt das neue System eine deutliche Verbesserung im Vergleich zu bestehenden Ansätzen dar. Die Zusammenführung der beschriebenen algorithmischen Software mit dem in [1] beschriebenen Hardwaresystem zur Messung von Atem- und Körperbewegungssignalen zu einem autonomen, berührungslosen System zur kontinuierlichen Schlafüberwachung ist eine mögliche Richtung zukünftiger Arbeiten.
The scoring of sleep stages is an essential part of sleep studies. The main objective of this research is to provide an algorithm for the automatic classification of sleep stages using signals that may be obtained in a non-obtrusive way. After reviewing the relevant research, the authors selected a multinomial logistic regression as the basis for their approach. Several parameters were derived from movement and breathing signals, and their combinations were investigated to develop an accurate and stable algorithm. The algorithm was implemented to produce successful results: the accuracy of the recognition of Wake/NREM/REM stages is equal to 73%, with Cohen's kappa of 0.44 for the analyzed 19324 sleep epochs of 30 seconds each. This approach has the advantage of using the only movement and breathing signals, which can be recorded with less effort than heart or brainwave signals, and requiring only four derived parameters for the calculations. Therefore, the new system is a significant improvement for non-obtrusive sleep stage identification compared to existing approaches.
This document presents an algorithm for a nonobtrusive recognition of Sleep/Wake states using signals derived from ECG, respiration, and body movement captured while lying in a bed. As a core mathematical base of system data analytics, multinomial logistic regression techniques were chosen. Derived parameters of the three signals are used as the input for the proposed method. The overall achieved accuracy rate is 84% for Wake/Sleep stages, with Cohen’s kappa value 0.46. The presented algorithm should support experts in analyzing sleep quality in more detail. The results confirm the potential of this method and disclose several ways for its improvement.