Refine
Year of publication
- 2017 (3)
Document Type
- Journal article (1)
- Conference proceeding (1)
- Working Paper (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- Informatik (3)
Publisher
- DIMECC Oy (1)
- Elsevier (1)
- Gesellschaft für Informatik e.V (1)
Due to rapidly changing technologies and business contexts, many products and services are developed under high uncertainties. It is often impossible to predict customer behaviors and outcomes upfront. Therefore, product and service developers must continuously find out what customers want, requiring a more experimental mode of management and appropriate support for continuously conducting experiments. We have analytically derived an initial model for continuous experimentation from prior work and matched it against empirical case study findings from two startup companies. We examined the preconditions for setting up an experimentation system for continuous customer experiments. The resulting RIGHT model for Continuous Experimentation (Rapid Iterative value creation Gained through High-frequency Testing) illustrates the building blocks required for such a system and the necessary infrastructure. The major findings are that a suitable experimentation system requires the ability to design, manage, and conduct experiments, create so-called minimum viable products or features, link experiment results with a product roadmap, and manage a flexible business strategy. The main challenges are proper, rapid design of experiments, advanced instrumentation of software to collect, analyse, and store relevant data, and integration of experiment results in the product development cycle, software development process, and business strategy. This summary refers to the article The RIGHT Model for Continuous Experimentation, published in the Journal of Systems and Software [Fa17].
The business landscape is changing radically because of software. Companies in all industry sectors are continously finding new flexibilities in this programmable world. They are able to deliver new functionalities even after the product is already in the customer's hands. But success is far from guaranteed if they cannot validate their assumptions about what their customers actually need. A competitor with better knowledge of customer needs can disrupt the market in an instant.
This book introduces continuous experimentation, an approach to continuously and systematically test assumptions about the company's product or service strategy and verify customers' needs through experiments. By observing how customers actually use the product or early versions of it, companies can make better development decisions and avoid potentially expensive and wasteful activities. The book explains the cycle of continuous experimentation, demonstrates its use through industry cases, provides advice on how to conduct experiments with recipes, tools, and models, and lists some common pitfalls to avoid. Use it to get started with continuous experimentation and make better product and service development decisions that are in-line with your customers' needs.
Context: Development of software intensive products and services increasingly occurs by continuously deploying product or service increments, such as new features and enhancements, to customers. Product and service developers must continuously find out what customers want by direct customer feedback and usage behaviour observation. Objective: This paper examines the preconditions for setting up an experimentation system for continuous customer experiments. It describes the RIGHT model for Continuous Experimentation (Rapid Iterative value creation Gained through High-frequency Testing), illustrating the building blocks required for such a system. Method: An initial model for continuous experimentation is analytically derived from prior work. The model is matched against empirical case study findings from two startup companies and further developed. Results: Building blocks for a continuous experimentation system and infrastructure are presented. Conclusions: A suitable experimentation system requires at least the ability to release minimum viable products or features with suitable instrumentation, design and manage experiment plans, link experiment results with a product roadmap, and manage a flexible business strategy. The main challenges are proper, rapid design of experiments, advanced instrumentation of software to collect, analyse, and store relevant data, and the integration of experiment results in both the product development cycle and the software development process.