Refine
Document Type
- Journal article (20)
- Conference proceeding (6)
- Book chapter (3)
Language
- German (29)
Is part of the Bibliography
- yes (29)
Institute
- Technik (29)
Publisher
Dynamik beim Schleifen
(2014)
Schleifen ist ein Bearbeitungsverfahren zur Erzeugung höchster Oberflächengenauigkeiten. In vielen Fällen sind geschliffene Oberflächen Funktionsflächen der späteren Bauteile, bei denen es nicht nur auf die Maß- und Formhaltigkeit, sondern auch auf die Rauheit und das optische Erscheinungsbild ankommt. Doch viele Einflussgrößen aller an der Zerspanung beteiligten Komponenten können das Schleifergebnis trüben. An der FH Reutlingen forscht man daran, diese Einflussgrößen in den Griff zu bekommen.
Das dynamische Verhalten von Werkzeugmaschinen ist für die Stabilität während der Bearbeitung sowie die Qualität der erzeugten Werkstücke von besonderer Bedeutung. Ein Einflussfaktor darauf ist die Dämpfung. Im Bereich der Maschinengestelle kommen seit langer Zeit unterschiedliche Materialien zum Einsatz. In diesem Fachbeitrag werden die Dämpfungskennwerte unterschiedlicher Gestellwerkstoffe an geometrisch gleichen Proben vergleichend gegenübergestellt. Als weitere Kenngröße wurde die Lage der (1. Biege-) Eigenfrequenz als Maß für die massebezogene dynamische Steifigkeit verwendet. Die Effekte beim Übergang von einfachen Bauteilen zu komplexen Strukturen runden den Fachartikel ab.
Das dynamische Verhalten von Werkzeugmaschinen beeinflusst in erheblichem Maße die Leistungsfähigkeit und Genauigkeit spanender Werkzeugmaschinen. Das Verständnis der das Rattern beeinflussenden Faktoren ist von entscheidender Bedeutung für die konstruktive Auslegung der Maschinen, Werkzeuge, Vorrichtungen und Prozesse. Das dynamische Verhalten kann durch eine gezielte Modifikation von Steifigkeit und Dämpfung erheblich verbessert werden. Es werden unterschiedliche Möglichkeiten im Bereich der Gestelle, Komponenten und Werkzeuge aufgezeigt, mit denen die dynamischen Eigenschaften optimiert werden.
Rattern nicht erwünscht
(2018)
Die Additive Fertigung bietet großes Potenzial zur Erschließung neuer, flexibler und innovativer Fertigungsprozesse mit kurzen Durchlaufzeiten. Erhöhte Komplexität und die Integration von Funktionen in Bauteile wird gefördert. Zur Steigerung der Konkurrenzfähigkeit und weiteren Ausweitung des Einsatzgebietes sind automatisierte Fertigungsschritte nach dem Bauprozess erforderlich. Werkzeugmaschinen spielen auch in der Prozesskette der Additiven Fertigung eine zentrale Rolle bei der Erzeugung von genauen Funktionsflächen. Dabei ist evtl. eine andere Auslegung aufgrund reduzierter Zerspanvolumen und geringeren Flächen möglich.
Rattern unerwünscht
(2018)
Bei der spanenden Bearbeitung metallischer Werkstücke mit Werkzeugmaschinen ist die Produktivität und Qualität der erzeugten Werkstücke wesentliches Kriterium für die Wirtschaftlichkeit. Zur Erreichung dieser Ziele sind genaue Kenntnisse der Leistungsfähigkeit und Eigenschaften der eingesetzten Produktionsmittel erforderlich. Dazu sind seit geraumer Zeit unterschiedliche Methoden der Untersuchung z.B. der statischen und dynamischen Maschineneigenschaften bekannt. Dazu gehören die Messung der statischen und dynamischen Nachgiebigkeit, die Aufnahme der Eigenschwingungen mittels der experimentellen Modalanalyse. Diese Methoden werden häufig nur im Laborbetrieb angewandt. In diesem Beitrag werden Kriterien dargestellt, die bei der Übertragung der Analyse auf den realen Betrieb noch zu berücksichtigen sind, um die Ergebnisse interpretieren zu können.
Die Hochschule Reutlingen hat eine vergleichende Untersuchung an Spannfuttern für Schaftfräser vorgenommen. Fazit: Die Steifigkeit einer Aufnahme hat einen stärkeren Einfluss auf das Schwingverhalten als das Dämpfungsvermögen.
Das dynamische Verhalten von Werkzeugmaschinen besitzt entscheidenden Einfluss auf die Bearbeitungsergebnisse. Zusammen mit dem Eigenverhalten der Maschine und dem Werkstück ergibt dies die für die Bearbeitungsgenauigkeit entscheidende statische Steifigkeit und die dynamische Nachgiebigkeit. Im Folgenden wird das Zusammenspiel dieser Komponenten im System näher dargestellt.