Refine
Document Type
- Journal article (2)
- Book chapter (2)
Language
- English (4)
Has full text
- yes (4)
Is part of the Bibliography
- yes (4)
Institute
- Life Sciences (4)
Crosslinked thermoplastics
(2014)
Cross-linked thermoplastics represent an important class of materials for numerous applications such as heat-shrinkable tubing, rotational molded parts, and polyolefin foams. By cross-linking olefins, their mechanical performance can be significantly enhanced. This chapter covers the three main methods for the cross-linking of thermoplastics: radiation cross-linking, chemical cross-linking with organic peroxides, and cross-linking using silane-grafting agents. It also considers the major effects of the cross-linking procedure on the performance of the thermoplastic materials discussed.
Cross-linked thermoplastics
(2022)
Cross-linked thermoplastics represent an important class of materials for numerous applications such as heat-shrinkable tubing, rotational molded parts, and polyolefin foams. By cross-linking olefins, their mechanical performance can be significantly enhanced. This chapter covers the three main methods for the cross-linking of thermoplastics: radiation cross-linking, chemical cross-linking with organic peroxides, and cross-linking using silane-grafting agents. It also considers the major effects of the cross-linking procedure on the performance of the thermoplastic materials discussed.
This article provides a general overview of the most promising candidates of bio based materials and deals with the most important issues when it comes to their incorporation into PF resins. Due to their abundance on Earth, much knowledge of lignin-based materials has already been gained and uses of lignin in PF resins have been studied for many decades. Other natural polyphenols that are less frequently considered for impregnation are covered as well, as they do also possess some potential for PF substitution.
High quality decorative laminate panels typically consist of two major types of components: the surface layers comprising décor and overlay papers that are impregnated with melamine-based resins, and the core which is made of stacks of kraft papers impregnated with phenolic (PF) resin. The PF-impregnated layers impart superior hydrolytic stability, mechanical strength and fire-resistance to the composite. The manufacturing involves the complex interplay between resin, paper and impregnation/drying processes. Changes in the input variables cause significant alterations in the process characteristics and adaptations of the used materials and specific process conditions may, in turn, be required. This review summarizes the main variables influencing both processability and technological properties of phenolic resin impregnated papers and laminates produced therefrom. It is aimed at presenting the main influences from the involved components (resin and paper), how these may be controlled during the respective process steps (resin preparation and paper production), how they influence the impregnation and lamination conditions, how they affect specific aspects of paper and laminate performance, and how they interact with each other
(synergies).