Refine
Document Type
- Journal article (2)
- Conference proceeding (1)
Language
- English (3)
Has full text
- yes (3)
Is part of the Bibliography
- yes (3)
Institute
- ESB Business School (2)
- Informatik (1)
Publisher
- Academy of Management (1)
- Springer (1)
- Taylor & Francis (1)
Unraveling the double-edged sword : effects of cultural diversity on creativity and innovativeness
(2014)
Cultural diversity is considered a “double-edged sword” (Kravitz, 2005) as research on its effects on teams’ performance regularly delivers inconsistent and contradictory results. This paper makes an attempt to unravel the double-edged sword by discerning different forms of cultural diversity: separation and variety (Harrison & Klein, 2007). Based on a review of the literature, a conceptual model is developed hypothesizing that cultural variety yields positive, while cultural separation yields negative effects on team creativity and innovativeness. In addition the effects of national diversity are contrasted to proof whether national diversity can serve as a proxy for cultural diversity as is often practiced. The model is tested on a sample of 113 student teams of Entrepreneurship modules at 4 European universities. Cultural diversity is measured directly on the basis of individual team members’ cultural value orientations by means of the CPQ4 (Maznevski, DiStefano, Gomez, Noorderhaven & Wu, 2002). Data is analyzed using the PLS structural equation modeling technique. The results confirm the hypothesized impacts of cultural variety and separation on creativity but do not deliver evidence for impacts on innovativeness. Same is true for national diversity. Interestingly, national diversity does not show any relation to neither form of cultural diversity.
Whether diversity enhances or impedes team creativity remains an issue of scholarly debate. Explanations of this ambiguity often lie in how diversity is both operationalized and measured. Eschewing the popular approach of using differences in objective criteria to signal diversity, a deep-level approach that focuses on differences in personal values is taken in this study. Value diversity is measured in the two forms of variety and separation and their associations with team creativity are explored. The investigation is augmented by considering the mediating role of team communication in these associations. The analysis was conducted on a sample of 98 teams, using both subjective and objective measures. The findings reveal that when considering value diversity in terms of variety, there is a positive association between diversity and team creativity. However, when the separation dimension of value diversity is considered, a negative association between diversity and team creativity is identified. Complex pathways pertaining to the role of communication within these relationships are also uncovered. In moving beyond rudimentary categories and measurement of diversity, this study further elucidates the complexity of the diversity–creativity relationship. Conclusions are drawn and implications for further research and managerial practice are derived.
The proposed approach applies current unsupervised clustering approaches in a different dynamic manner. Instead of taking all the data as input and finding clusters among them, the given approach clusters Holter ECG data (longterm electrocardiography data from a holter monitor) on a given interval which enables a dynamic clustering approach (DCA). Therefore advanced clustering techniques based on the well known Dynamic TimeWarping algorithm are used. Having clusters e.g. on a daily basis, clusters can be compared by defining cluster shape properties. Doing this gives a measure for variation in unsupervised cluster shapes and may reveal unknown changes in healthiness. Embedding this approach into wearable devices offers advantages over the current techniques. On the one hand users get feedback if their ECG data characteristic changes unforeseeable over time which makes early detection possible. On the other hand cluster properties like biggest or smallest cluster may help a doctor in making diagnoses or observing several patients. Further, on found clusters known processing techniques like stress detection or arrhythmia classification may be applied.