Refine
Document Type
- Journal article (11)
- Conference proceeding (1)
Language
- English (12)
Is part of the Bibliography
- yes (12)
Institute
- Life Sciences (11)
- ESB Business School (1)
Publisher
Monodisperse polystyrene spheres are functional materials with interesting properties, such as high cohesion strength, strong adsorptivity, and surface reactivity. They have shown a high application value in biomedicine, information engineering, chromatographic fillers, supercapacitor electrode materials, and other fields. To fully understand and tailor particle synthesis, the methods for characterization of their complex 3D morphological features need to be further explored. Here we present a chemical imaging study based on three-dimensional confocal Raman microscopy (3D-CRM), scanning electron microscopy (SEM), focused ion beam (FIB), diffuse reflectance infrared Fourier transform (DRIFT), and nuclear magnetic resonance (NMR) spectroscopy for individual porous swollen polystyrene/poly (glycidyl methacrylate-co-ethylene di-methacrylate) particles. Polystyrene particles were synthesized with different co-existing chemical entities, which could be identified and assigned to distinct regions of the same particle. The porosity was studied by a combination of SEM and FIB. Images of milled particles indicated a comparable porosity on the surface and in the bulk. The combination of standard analytical techniques such as DRIFT and NMR spectroscopies yielded new insights into the inner structure and chemical composition of these particles. This knowledge supports the further development of particle synthesis and the design of new strategies to prepare particles with complex hierarchical architectures.
One-pot synthesis of micron partly hollow anisotropic dumbbell shaped silica core-shell particles
(2016)
A facile method is described to prepare micron partly hollow dumbbell silica particles in a single step. The obtained particles consist of a large dense part and a small hollow lobe. The spherical dense core as well as the hollow lobe are covered by mesoporous channels. In the case of a smaller lobe these channels are responsible for the permeability of the shell which was demonstrated by confocal imaging and spectroscopy.
Hybrid organic/inorganic nanocomposites combine the distinct properties of the organic polymer and the inorganic filler, resulting in overall improved system properties. Monodisperse porous hybrid beads consisting of tetraethylene pentamine functionalized poly(glycidyl methacrylateco-ethylene glycol dimethacrylate) particles and silica nanoparticles (SNPs) were synthesized under Stoeber sol-gel process conditions. A wide range of hybrid organic/silica nanocomposite materials with different material properties was generated. The effects of n(H2O)/n(TEOS) and c(NH3 ) on the hybrid bead properties particle size, SiO2 content, median pore size, specific surface area, pore volume and size of the SNPs were studied. Quantitative models with a high robustness and predictive power were established using a statistical and systematic approach based on response surface methodology. It was shown that the material properties depend in a complex way on the process factor settings and exhibit non-linear behaviors as well as partly synergistic interactions between the process factors. Thus, the silica content, median pore size, specific surface area, pore volume and size of the SNPs are non-linearly dependent on the water-to-precursor ratio. This is attributed to the effect of the water-to-precursor ratio on the hydrolysis and condensation rates of TEOS. A possible mechanism of SNP incorporation into the porous polymer network is discussed.
Monodisperse porous poly(glycidyl methacrylate-co-ethylene glycol dimethacrylate) particles are widely applied in different fields, as their pore properties can be influenced and functionalization of the epoxy group is versatile. However, the adjustment of parameters which control morphology and pore properties such as pore volume, pore size and specific surface area is scarcely available. In this work, the effects of the process factors monomer:porogen ratio, GMA:EDMA ratio and composition of the porogen mixture on the response variables pore volume, pore size and specific surface area are investigated using a face centered central composite design. Non-linear effects of the process factors and second order interaction effects between them were identified. Despite the complex interplay of the process factors, targeted control of the pore properties was possible. For each response a response surface model was derived with high predictive power (all R2 predicted > 0.85). All models were tested by four external validation experiments and their validity and predictive power was demonstrated.
High-performance liquid chromatography is one of the most important analytical tools for the identification and separation of substances. The efficiency of this method is largely determined by the stationary phase of the columns. Although monodisperse mesoporous silica microspheres (MPSM) represent a commonly used material as stationary phase their tailored preparation remains challenging. Here we report on the synthesis of four MPSMs via the hard template method. Silica nanoparticles (SNPs) which form the silica network of the final MPSMs were generated in situ from tetraethyl orthosilicate (TEOS) in the presence of (3-aminopropyl) triethoxysilane (APTES) functionalized p(GMA-co-EDMA) as hard template. Methanol, ethanol, 2-propanol, and 1-butanol were applied as solvents to control the size of the SNPs in the hybrid beads (HB). After calcination, MPSMs with different sizes, morphology and pore properties were obtained and characterized by scanning electron microscopy, nitrogen adsorption and desorption measurements, thermogravimetric analysis, solid state NMR and DRIFT IR spectroscopy. Interestingly, the 29Si NMR spectra of the HBs show T and Q group species which suggests that there is no covalent linkage between the SNPs and the template. The MPSMs were functionalized with trimethoxy (octadecyl) silane and used as stationary phases in reversed-phase chromatography to separate a mixture of eleven different amino acids. The separation characteristics of the MPSMs strongly depend on their morphology and pore properties which are controlled by the solvent during the preparation of the MPSMs. Overall, the separation behavior of the best phases is comparable with those of commercially available columns. The phases even achieve faster separation of the amino acids without loss of quality.
Melamine–formaldehyde (MF) resins are widely used as adhesives and finishing materials in the wood industry. During resin cure, either methylene ether or methylene bridges are formed, leading to the formation of a three‐dimensional resin network. Not only the curing degree, but also the chemical species present in the cured resin determine the quality of the final product. Analytical methods allowing a detailed investigation of network formation are of great benefit to manufacturers. In the present work, resin cure of an MF precondensate is studied at different temperatures (100–200 °C) without considering the initial pH as a factor. Isoconversional kinetic analysis based on exothermal curing enthalpies enables calculation of the crosslinking degree at a given time/temperature regime. A semiquantitative determination of the chemical groups present is performed based on solid‐state nuclear magnetic resonance data. Fourier transform infrared spectroscopy has shown to be a fast and reliable analytical tool with high sensitivity toward functional groups and with great potential for at‐line process control.
This study introduces a straightforward approach to construct three-dimensional (3D) surface-enhanced Raman spectroscopy (SERS) substrates using chemically modified silica particles as microcarriers and by attaching metal nanoparticles (NPs) onto their surfaces. Tollens’ reagent and sputtering techniques are utilized to prepare the SERS substrates from mercapto-functionalized silica particles. Treatment with Tollens’ reagent generates a variety of silver NPs, ranging from approximately 10 to 400 nm, while sputtering with gold (Au) yields uniformly distributed NPs with an island-like morphology. Both substrates display wide plasmon resonances in the scattering spectra, making them effective for SERS in the visible spectral range, with enhancement factors (ratio of the analyte’s intensity at the hotspot compared to that on the substrate in the absence of metal nanoparticles) of up to 25. These 3D substrates have a significant advantage over traditional SERS substrates because their active surface area is not limited to a 2D surface but offers a much greater active surface due to the 3D arrangement of the NPs. This feature may enable achieving much higher SERS intensity from within streaming liquids or inside cells/tissues.
Mesoporous silica microspheres (MPSMs) find broad application as separation materials in high liquid chromatography (HPLC). A promising preparation strategy uses p(GMA-co-EDMA) as hard templates to control the pore properties and a narrow size distribution of the MPMs. Here six hard templates were prepared which differ in their porosity and surface functionalization. This was achieved by altering the ratio of GMA to EDMA and by adjusting the proportion of monomer and porogen in the polymerization process. The various amounts of GMA incorporated into the polymer network of P1-6 lead to different numbers of tetraethylene pentamine in the p(GMA-co-EDMA) template. This was established by a partial least squares regression (PLS-R) model, based on FTIR spectra of the templates. Deposition of silica nanoparticles (SNP) into the template under Stoeber conditions and subsequent removal of the polymer by calcination result in MPSM1-6. The size of the SNPs and their incorporation depends on the pore parameters of the template and degree of TEPA functionalization. Moreover, the incorporated SNPs construct the silica network and control the pore parameters of the MPSMs. Functionalization of the MPSMs with trimethoxy (octadecyl) silane allows their use as a stationary phase for the separation of biomolecules. The pore characteristics and the functionalization of the template determine the pore structure of the silica particles and, consequently, their separation properties.
The hard template method for the preparation of monodisperse mesoporous silica microspheres (MPSMs) has been established in recent years. In this process, in situ-generated silica nanoparticles (SNPs) enter the porous organic template and control the size and pore parameters of the final MPSMs. Here, the sizes of the deposited SNPs are determined by the hydrolysis and condensation rates of different alkoxysilanes in a base catalyzed sol–gel process. Thus, tetramethyl orthosilicate (TMOS), tetraethyl orthosilicate (TEOS), tetrapropyl orthosilicate (TPOS) and tetrabutyl orthosilicate (TBOS) were sol–gel processed in the presence of amino-functionalized poly (glycidyl methacrylate-co-ethylene glycol dimethacrylate) (p(GMA-co-EDMA)) templates. The size of the final MPSMs covers a broad range of 0.5–7.3 µm and a median pore size distribution from 4.0 to 24.9 nm. Moreover, the specific surface area can be adjusted between 271 and 637 m2 g−1. Also, the properties and morphology of the MPSMs differ according to the SNPs. Furthermore, the combination of different alkoxysilanes allows the individual design of the morphology and pore parameters of the silica particles. Selected MPSMs were packed into columns and successfully applied as stationary phases in high-performance liquid chromatography (HPLC) in the separation of various water-soluble vitamins.